BEAM BASED ALIGNMENT STRATEGY FOR THE GROUP CONTROLLED MAGNETS SYSTEM

N. Hayashi", JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
S. Lee, T. Toyama, KEK, Ibaraki-Ken, Japan

Abstract

The beam based alignment of the beam position monitor (BPM) becomes an important tool to reduce the closed orbit distortion (COD) in the recent accelerator. Usually, it requires the independent control of the quadrupole field. Changing the current of a quadrupole magnet, one would find the unperturbed position. However, the J-PARC Rapid-Cycling Synchrotron (RCS) has seven quadrupole families and only group of each family can be controlled simultaneously. A similar alignment procedure is applicable for the coupledcontrolled magnet system, but it becomes very complicated. For the simplest case, three magnets grouped together, four different beam orbits have to be measured at three different BPM locations. The method and some simulation results for J-PARC/RCS case will be presented in this report.

INTRODUCTION

The RCS of the J-PARC (Japan Proton Accelerator Research Complex) provides 1MW proton beam with 25 Hz repetition to the target for Spallation Neutron Source. It is also used as an injector of 50 GeV Main Ring synchrotron. The circumference of RCS is 348 m . The proton is injected at 400 MeV (or 181 MeV) into two RF buckets and fast extracted at 3 GeV [1].

The RCS has 60 quadrupole magnets (QM), and 54 BPMs with every half cell. It has 52 steering dipole magnets (26 each for horizontal and vertical) in order to perform COD correction. There are seven quadrupole families; each family consists of three, six, nine or twelve magnets. There is neither separate power supplies nor auxiliary coil windings on each individual magnet. The quadrupole field can be controlled with each family unit.

It will review the linear orbit theory and discuss a simple case, the individually controllable magnet system at first. Then, it extends to more complicated case and shows some simulation studies. It will also mention about further issues to be accomplished in the future.

FORMULATION FOR INDEPENDENT CONTROLLABLE QUADRUPOLE

With a kick θ at position k, a transverse position x_{n} of the position $s=s_{n}$ in a ring is expressed as following.

$$
\begin{equation*}
x_{n}=\sum_{k} a_{n k} \theta_{k} \tag{1}
\end{equation*}
$$

where $a_{n k}$ is a matrix,

$$
\begin{equation*}
a_{n k}=\frac{\sqrt{\beta_{n} \beta_{k}}}{2 \sin \pi \nu} \cos \left(\pi \nu-\left|\phi_{n}-\phi_{k}\right|\right) \tag{2}
\end{equation*}
$$

where v is tune, β_{n} is the beta-function, and ϕ_{n} is the phase advance at position n. If the kick is due to miss alignment of the k-th quadrupole magnet (QM) Δx_{k}, it is written as $\theta=g l \Delta x / B_{0} \rho=K l \Delta x$. This part of x_{n} is expressed explicitly,

$$
\begin{equation*}
x_{n}=\sum_{k} a_{n k} K_{k} l_{k} \Delta x_{k}+\sum_{k} a_{n p} \theta_{p} \tag{3}
\end{equation*}
$$

where g is the field gradient, $B_{0} \rho$ is the magnetic rigidity, l is the length of QM, K is $K=g / B_{0} \rho$. By changing the strength of the field gradient K_{n}, the orbit change at the same place δx_{n} becomes as follow [2].

$$
\begin{align*}
\delta x_{n} & =\frac{\partial x_{n}}{\partial K_{n}} \delta K_{n} \tag{4}\\
& =-a_{n n}\left(x_{n}-\Delta x_{n}\right) \delta K_{n} l_{n}
\end{align*}
$$

The orbit change is also affected by the distant m-th QM through coefficient $a_{n m}$.

$$
\begin{equation*}
\delta x_{n}=-a_{n m}\left(x_{m}-\Delta x_{m}\right) \delta K_{m} l_{m} \tag{5}
\end{equation*}
$$

In fact, this formula is used at KEKB, in order to make many displacement measurements by any BPM in the ring [2, 3].
For various initial orbits (i,j), for example $x_{1}{ }^{(i)}, x_{2}{ }^{(i)}, \ldots$, $x_{n}{ }^{(i)}$, one can define corresponding equations. At least two equations give a solution of the bellow simultaneous equations.

$$
\binom{\delta x_{n}^{(i)}}{\delta x_{n}^{(j)}}=\left(\begin{array}{cc}
-x_{m}^{(i)} & 1 \tag{6}\\
-x_{m}^{(j)} & 1
\end{array}\right)\binom{1}{\Delta x_{m}} a_{n m} \delta K_{m} l_{m}
$$

One can obtain miss alignment of m-th QM Δx_{m} as the solution.
\#naoki.hayashi@j-parc.jp

FORMULATION FOR COUPLED QUADRUPOLE SYSTEM

In case of a coupled controlled QM system, one can apply a similar method discussed above. The simplest system of the J-PARC RCS is QFM family, which consists of three magnets. In the following discussion, it will take this system as an example. Supposed that these three magnets are located at position 1, 2 and 3. Orbit difference δx_{n} by varying field strength δK is,

$$
\begin{align*}
\delta x_{n} & =\left[-a_{n 1}\left(x_{1}-\Delta x_{1}\right)-a_{n 2}\left(x_{2}-\Delta x_{2}\right)\right. \\
& \left.-a_{n 3}\left(x_{3}-\Delta x_{3}\right)\right] \delta K l \\
& =-\left[a_{n 1} x_{1}+a_{n 2} x_{2}+a_{n 3} x_{3}+w_{n}\right] \delta K l \tag{7}
\end{align*}
$$

where w_{n} is,

$$
\begin{equation*}
w_{n}=a_{n 1} \Delta x_{1}+a_{n 2} \Delta x_{2}+a_{n 3} \Delta x_{3} \tag{8}
\end{equation*}
$$

Initially, one has to have 4 different orbits (i,j,k,l). The positions x_{n} at every QFM are measured before and after K modification, and COD difference δx_{n} are calculated. One obtains THREE simultaneous equations ($\mathrm{n}=1,2,3$), which have 4-unknown, $a_{n 1}, a_{n 2}, a_{n 3}$, and w_{n}.

$$
\left(\begin{array}{l}
\delta x_{n}^{(i)} \\
\delta x_{n}^{(j)} \\
\delta x_{n}^{(k)} \\
\delta x_{n}^{(l)}
\end{array}\right)=-\left(\begin{array}{llll}
x_{1}^{(i)} & x_{2}^{(i)} & x_{3}^{(i)} & 1 \\
x_{1}^{(j)} & x_{2}^{(j)} & x_{3}^{(j)} & 1 \\
x_{1}^{(k)} & x_{2}^{(k)} & x_{3}^{(k)} & 1 \\
x_{1}^{(l)} & x_{2}^{(l)} & x_{3}^{(l)} & 1
\end{array}\right)\left(\begin{array}{l}
a_{n 1} \\
a_{n 2} \\
a_{n 3} \\
w_{n}
\end{array}\right) \delta K l
$$

Obtaining 3 sets of 4 solutions, namely 12 variables, one makes another simultaneous equation.

$$
\left(\begin{array}{l}
w_{1} \tag{10}\\
w_{2} \\
w_{3}
\end{array}\right)=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)\left(\begin{array}{c}
\Delta x_{1} \\
\Delta x_{2} \\
\Delta x_{3}
\end{array}\right)
$$

Then, finally, one can extract three unknowns $\Delta x_{1}, \Delta x_{2}$, Δx_{3}, which are offsets of all QFM magnets.

SIMULATION

In order to confirm above algorism, it is performed simulations by using SAD (Strategic Accelerator Design) [4]. Firstly, it is checked with individual controllable case. Then, it proceeds to check with grouped controlled system, namely QFM family.

Before going to further detail, it should be pointed out that relation among QM miss alignment Δx_{n}, BPM shift ΔX_{n}, ideal and measured orbits x_{n} and X_{n}, respectively. In
fact, there is no way to know the true value of x_{n} or Δx_{n}. In the simulation one would used x_{n} and Δx_{n}, however in reality, only measured value X_{n} and BPM displacement against QM can be determined [2]. Thus, we use ($x_{n}-\Delta x_{n}$) in the simulation, but only $\left(X_{n}-\Delta X_{n}\right)$ should be used in the actual experiment.

Table 1: Variables in the simulation and measurable

X_{n}	BPM measured value
x_{n}	true value; orbit
ΔX_{n}	BPM miss alignment with respect to QM
Δx_{n}	QM miss alignment

When the program is developed, the GUI tool (see Fig.1) is constructed together to examine various conditions, monitoring the orbits, or other twiss parameters modification during the virtual measuring process. It is also useful to debug the program and gives hints for the real control GUI.

In typical case, the field gradient of QFM is varying with 5%, and it uses three steering magnets to having four different orbits. The reason is that just one steering would give only linear combination of the other equations.

Figure 2 shows a result of the simulation. Randomised miss alignment of QFM ($\sigma=2.5 \mathrm{~mm}$ with 2σ cut) are estimated for 100 cases. It indicates that the discussed algorism does work in principle. Figure 3 shows that the difference between initially given shift of QFM and estimated of that.

Figure 1: A look of GUI simulator composed by SAD.

Figure 2: Initial displacement and estimation of the QFM.
A distance between the QFM centre and BPM along the beam axis is about one meter. Hatched area in Fig. 3 is given by orbit data at QFM centre. Non-hatched area is used orbit at the location of BPM. If the initial COD is large, the transverse orbit at the QFM and BPM might be significantly shifted and it may introduce an error source.

Figure 3: Difference between true and estimated QFM shift. Hatched and non-hatched area explained in the text.

DISCUSSION

The BPM system aims to be $\pm 0.2 \mathrm{~mm}$ position accuracy, because a beam optics simulation implies that small COD
(less than 1 mm) requires that accuracy should be better than 0.3 mm . The beam based alignment is necessary to achieve this requirement, though it is not so easy. Difficulties could be imaged from the fact that mostly used BPM sensor heads are $\phi 257$, $\phi 297$, and $\phi 377$ of inner diameter [5].

In the case of QFM it is more effective to adjust the horizontal direction. It is not so sensitive to the vertical direction, and this is one of issue to be addressed.

In this report, QFM family is taken as an example, but it is the simplest QM system in the RCS. The most complicated QM system has twelve magnets. Preliminary study for a six-magnet system was done, and it seems to work. But it likes to be more sensitive, whether used orbit data at QM centre or BPM location. While one would continue to study with more realistic conditions, one should look for the possibility to put additional hardware in order to control the QM current individually.

SUMMARY

It is reviewed that the formulation of the beam based alignment method with the single controlled QM system. It is extended for the coupled controlled QM system. Simulation results show the algorism does work. The scheduled beam commissioning of the J-PARC RCS fall 2007. Some issues to be effective BPM beam based alignment plan are discussed.

ACKNOWLEDGEMENT

An author thanks Mr. H. Harada for helping program on SAD, especially showing usages and examples of GUI toolkit.

REFERENCES

[1]Y. Yamazaki, eds, Accelerator Technical Design Report for High-Intensity Proton Accelerator Facility Project, J-PARC, KEK-Report 2002-13; JAERI-Tech 2003-044.
[2] N. Hiramatsu, Beam Instrumentation for Accelerators, KEK Internal 2004-4 (Japanese) p.108-115.
[3] M. Masuzawa et al, Proc. of EPAC2000, 1780.
[4]K. Oide et al, http://acc-physics.kek.jp/SAD/sad.html.
[5] N. Hayashi et al, Proc. of PAC2005, 299. http://accelconf.web.cern.ch/AccelConf/p05/PAPERS/ TOAD003.PDF

