FEL Activities In India

Srinivas Krishnagopal

Beam Physics & FEL Laboratory, RRCAT, Indore

28th International FEL Conference, 28 August – 1 September 2006, Berlin, Germany

Collaborators

Vinit Kumar Arvind Kumar Bhaskar Biswas Pravin Nerpagar Pratima Jain Kamal Kumar Pant Umesh Kale Shankar Lal V. Kodiarasan Saket Gupta Former BP&FEL Members Rajesh Gupta Renuka Rajput Bhas Bapat

Sanjay Chouksey (CAT), Vijendra Prasad (CAT), S. Mahadevan (IGCAR), Rohin Parkar

Major Accelerator Laboratories in India

- Raja Ramanna Centre for Advanced Technology (RRCAT) (INDUS light sources, CUTE-FEL, photoinjectors, SNS)
- Bhabha Atomic Research Centre (BARC) (ADS injector linac, industrial linacs)
- Variable Energy Cyclotron Centre (VECC) (variable energy & superconducting cyclotrons)
- Tata Institute of Fundamental Research (TIFR) (Pelletron + s/c post-accelerator)
- Inter-University Accelerator Centre (IUAC) (Pelletron + s/c post-accelerator)

FEL-related Activities

(1) Terahertz Free-Electron Laser

Tunable terahertz radiation from 50-100 μ m. Driven by a 10-15 MeV linac with a thermionic gun and PWT structure. Planar, Halbach, pure-permanent magnet undulator, 5 cm period, 2.5 m length, developed in-house.

(2) **Photoinjectors**

High-brightness electron beams from an S-band photocathode gun, based on the BNL/SLAC/UCLA Gun 3 design; Plane Wave Transformer (PWT) linac structures; 25 MW klystron modulator.

The CUTE-FEL Project

We are building a Compact, Ultrafast, TErahertz Free-Electron Laser (CUTE-FEL), lasing between 50 – 100 mm (with a 10-15 MeV electron beam).

The CUTE-FEL Parameters

Undulator parameters		
Туре	PPM, Halbach, planar	
Period length	50 mm	
Undulator length	2.5 m	
Gap	35 – 100 mm	
Max. undulator param.	0.80	
Magnet material	NdFeB	
Magnet size	12.5 x 12.5 x 50 mm ³	

Pre-buncher

Prototype designed, developed and tested. Final pre-buncher designed and indented

The Plane Wave Transformer (PWT) Linac

The Plane Wave Transformer (PWT) linac is a new kind of linac structure, with strong coupling and hence looser fabrication tolerances and higher shunt impedance. The only operating PWT linac is at UCLA.

PWT linac design simulations

[A. Kumar, et al., Phys. Rev. ST Accel. Beams, 5, 033501 (2002)]

TABLE III. Input beam parameters for	PARMELA simulations.
Paramatara	Values at input end of PWT structure
Farameters	Sit uotui c
Bunch charge	l nC
Bunch length	10 ps
Bunch distribution	Gaussian
Peak current	100 Amps
Initial energy	5 MeV
Average field gradient	32 MV/m

PWT linac fabrication

We have successfully developed the technology for fabricating linac structures

PWT linac test results

Dipole & quadrupole magnets

Setup for acceleration trials with PWT3 structure

Acceleration results

Figure: Beam was injected into the linac from a **DC** gun, so electrons will be accelerated to different energies, depending on the RF phase that they see. The figure shows the energy spectrum of the accelerated electrons.

- Maximum acceleration energy = 3.7 MeV (in 21 cm)
- Accelerating gradient achieved ~ 25 MV/m (with 5 MW RF power)

Undulator

Parameters

Type Magnet material Magnet size Undulator period Undulator length Gap variation Max. und. Parameter Pure permanent magnet NdFeB 12.5x12.5x50 mm³ 5 cm 2.5 m 33 – 100 mm 0.80

Characteristics of U25.1 and U25.2

Παραμετερ	Design	U25.1	U25.2
Ερρορ ιν Πεακ φιελδ	<1%	0.9%	0.7%
Ημοδριν περιοδ (ρμσ)	<100 microns	82 micr.	80 micr.
Πηασε σηακε (ρμσ, δεγρεε)	< 5	2	2
Beam wander	< 0.5	1.14	0.33
(r.m.s.)			

VERTICAL FIELD AND TRAJECTORIES

Undulators are now ready to accept beam from the linac

Photocathode gun

[A. Kumar, et al., Phys. Rev. ST Accel. Beams, 5, 103501 (2002)]

Nominal Parameters

- 4-5 MeV energy
- 1 nC charge (in 10 ps)
- Cu photocathode
- 5 mJ (IR) Nd:VAN laser

TABLE II. Comparison of the measured and simulated results.				
	SUPERFISH Design values (MHz)	SUPERFISH (Fabricated) (MHz)	GDFIDL Fabricated) (MHz)	Cold tests (MHz)
Full-cell	2789	2788	2789	2795
Half-cell	2854	2883	2881	2898
Coupled cells	2856	2883	2881	2875

FIG. 9. (Color) PARMELA simulations for transverse emittance variation with distance, with a solenoid magnet field of 4.5 kG at 16 cm from cathode and a 4-cell PWT linac at 135 cm.

Cold model investigations

Prototyping

- Two OFE Cu prototypes for qualifying machining by difft. Vendors
- Two ETP Cu prototypes for qualifying brazing
- Two Al prototypes for physics tests and tuning
- Two ETP Cu prototypes for tuning the gun

Modal vs independent full cell frequency

Tuning the photocathode gun

Spectrum and bead-pull for the tuned photocathode gun (100 mm cut on full cell)

Al prototypes

ETP Cu prototypes

We have placed an order for fabricating four photocathode guns

Future Plans

An Indo-French Workshop on FELs was held in Goa, India, in March this year.

■ Feedback from the Indian users was that a 4GLS would be highly desirable, but recommended a staged approach.

Substantial interest even in an IR-FEL facility

Roadmap for a 4GLS

	Stage I	Stage II	Stage III
Wavelength (nm)	1,000	10	0.1
Energy (GeV)	0.1	1	10
Norm. emit. (mm.mrad)	5	3	1
Undulator Period (mm)	50	30	30
Undulator Length (m)	5	30	100
Undulator Parameter 'K'	1	1.5	3
Peak Current (kA)	0.1	2	4
Pulse Structure (fs @ Hz)	1,500 @ 50	150 @ 50	75 @ ???
Accelerator Technology	Normal; S-band	Normal; S-band	???

SUMMARY

■ Right now we are getting ready to inject beam from the linac into the undulator for the CUTE-FEL

There is substantial user interest for an IR-FEL facility (Stage I of the proposed roadmap)

■ We are also looking for approval for detailed design studies for a DUV-FEL (Stage II of the roadmap) – where we look forward to collaboration with the international community

Acknowledgements

Power Supplies Division, RRCAT

S. Kotaiah, A.C. Thakurta, T.A. Puntambekar, S.R. Tiwari, M. Gandhi, M. Koli

Instrumentation & Controls Division, RRCAT

A. G. Bhujle, V. Bhanage, L. Jain, V.P. Singh

Magnet Division, RRCAT

S.S. Prabhu, R.S. Shinde, K. Ruwali

RFM Section, RRCAT

P.R. Hannurkar, P. Shrivastava

Coolant Systems Section, RRCAT

Pravin Kumar, R.M. Pandey

Vacuum Section, RRCAT

S. K. Shukla, V. Sathe

DMRL, DRDO & LPSC, ISRO (brazing)

<u>K. Mallikharjuna Rao</u>, Rajeshwar Rao <u>P. Raghuthama Rao</u>, D. Gangadhar, C. Karthikeyan, M. Gani, K. Ravi Kumar