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Abstract 

Further dynamic aperture studies on an ultra-low emittance 
damping ring lattice are presented. A past conference paper[l 
explained how the fast damping rate, the low emittance an d 
the large dynamic aperture are acheived for this lattice. Dy- 
namic aperture improvement with octupole correction was also 
reported. In this paper the dynamic aperture improvement is 
emphasized with a more systematic derivation and study of the 
octupole correction. Also, the modified sextupole proposal of 
Cornacchia and Halbach[2] is applied to the damping ring lat- 
tice. 

I. INTRODUCTION 

The ultra-low emittance damping ring lattice reported in 
a past conference paper[l] makes use of long dispersion-free 
straight sections filled with strong wigglers to produce fast syn- 
chrotron radiation damping. The lattice also has large radius 
arcs with strongly-focusing FODO cells to produce low qua.n- 
turn excitation. As Wiedemann points out in a proposal to 
lower the emittance of PEP[3], both features yield a very low 
equilibrium emittance. In the damping ring lattice proposed in 
[I], an emittance of 2.5 x lo-l1 m-rad for a beam energy of 4 
GeV is acheived (tn=fr=2 x 10e7m-rad 

2 
. 

To maximize the dynamic aperture 

I 

the range of stability 
for transverse oscillations , FODO cell achromats as defined by 
Brown and Servranckx[4 with non-interleaved sextupoles are 
adopted. Although an interleaved achromat arrangement can 
accomodate a larger number of sextupoles, thus reducing the 
individual strengths, the dynamic aperture suffers greatly. In 
both interleaved and non-interleaved cases the second-order ge- 
ometric aberration sextupole terms are made to vanish. Thus, 
vanishing second-order aberration terms does not guarantee the 
maximum possible dynamic aperture[5 In general, sextupoles 
interact with each other to produce I, igher-order aberration 
terms which become important for low emittance lattices. Non- 
interleaved achromats, as are implemented in the damping ring 
proposed above, are simply a way to prevent sextupoles from 
interacting in this way. Further examination shows that the 
main geometric aberrations produced in these optics modules 
are due to the lengths of the sextupoles. 

In this paper, new analytical formulae for the sextupole 
length aberrations are derived. Octupoles can be inserted into 
the lattice to selectively cancel some of these aberration terms, 
thus enlarging different parts of the dynamic aperture. Numer- 
ical tracking of particle trajectories confirms this. 

II. SEXTUPOLE LENGTH ABERRATIOY 

The equat.ions of transverse motion inside a sext.upole are 

2” = +(x2 - Y2)> 

y” = mxy. (2) 

where 
These 
dinate 

m is the normalized sextupole strength, (e/cp)a*B 
equations will be integrated along the longitudina li 

/ax’. 
coor- 

s using an iterative method. One starts with constant, 
initial solut,ions ~(8) = 20, x’(3) = x;, y(3) = yo, Y’(s) = y;, 
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l, 
X = -;o(x” - 3XY2), (5) 

y” = -;o(y3 - 3.?y), (9) 

where 0 = (e/cp)d3By/dx3. The largest third-order matrix 
elements for octupoles are the same type as those of sextupoles. 
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and iterate the following 4 steps, 

..3 
x’(s) +- xb + 

S( 
-im(x(s)2 - y(s)‘)) ds’, (3) 

0 
.3 

x(3) + x0 + 
/ 

~‘(3’) ds’, (4) 
0 

Y’(S) + yj,+ 
J 

’ (mx(s)y(s)) ds’, (5) 
0 

Y(S) - Yo + 
J 

8 
y’(3’) ds’. (6) 

0 

until the resulting functions (polynomials in s) are of sufficient 
accuracy. Keeping only terms cubic in coordinate variables, the 
sextupole exit coordinates take the form 

x,(Z) = ~Ri,(l)XIO + f-&,k(l)r,oxko 
3=1 j=l k=l 

+ f-2 2 ~,~ki(+]O~kOT,O (7) 
,=I k=l 1~1 

for l<i<4 where ~1 E 2, x2 E T’, 3‘3 E Y, and x4 E y’, and 1 is 
the sextupole length. The notat,ion and formalism of nonlinear 
matrix elements is that of K.Brown[4]. The R,, matrix elements 
represent a drift space of length equal to the sextupole length. 
The T+ matrix elements are proportional to the integrated 
sextupole strength. An achromat is designed so that the T,3k 
terms for l<i,j, 1;<4 contributed by the sextupole pair within 
the achromat cancel exactly. The U terms are called third- 
order matrix elements, and are the most important terms for an 
achromat with long sextupoles, since the contributions of each 
sextupole of the pair add together. It is therefore sufficient 
to examine the U terms of one sextupole for local octupole 
compensation. 

A. Largest Third-Order Matrix Elements 

Out of 80 possible UtJk[ terms (for 1<1,j, k<4), 40 are non- 
zero. Most of these are small. The strongest terms are found 
by converting the ZrZJXk factors into normalized coordinates. 
The normalized coordinates are u = x/a and i = fix’ + 

mysx/& for the horizontal plane, and 21 = y/d and ti = 

&Y’ + ayyy/ & for th e vertical plane. In a linear lattice, 
the particle trajectories in normalized coordinate phase space 
are circles (i.e., u2 + 2i2 = 25 is an invariant). Inserting the 
normalized coordinate definitions into equation (7) gives cubic 
terms in u, in, v, and 6, which perturb the value of the linear 
invariant at every sextupole location. The coefficients of the 
cubic terms are the UiJkl times some power of l/a=.,, where 1 
is the sextupole length. Normally in a st,orage ring, 1 << /?s,y. 
Therefore the most important nonlinear matrix elements have 
the lowest power of I/pZ,,. 

One can repeat the same integration procedure above for 
particle motion in an octupole field: 
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If both sextupole and octupole fields are combined in a magnet, 
the largest third-order aberration terms are 

Ati = 
( 

1 
--01 f -$n’l’) /3;u3 + (;01+ +n213) &!&uv2, 

Ais = (-iOl+ {m213) &v” + (iOl+ $m213) /3z@v~‘~’ 

(11) 
These two important equations summarize the largest aberra- 
tion terms for a long sextupole and connect the aberrations 
from sextupoles wit.h those of octupoles. They are the basis of 
octupole correction. 

III. LOCAL OCTUPOLE CORRECTION 

An octupole field with strength 0 can be superimposed on 
the sextupole field to cancel one or the other higher-order aber- 
ration terms, but not both, unfortunately. However, one of 
the two terms in each of these equations is much greater t.han 
the other because the sextupoles are placed where /3= > ,By or 
py > gZ for effective chromaticity correction. The larger of 
the two terms must obviously be targeted for cancellation us- 
ing the octupole field strength as an adjustable parameter. The 
appropriate oct.upole integrated strengt,h is 

1 
Ol= -m213. 

2 (12) 

For instance, if /3= > &, this choice of octupole strength cancels 
the u3 term in equation (10) and also the small u3 term in 
equation (11): but increases the value of the coefficient of the 
coupling terms uy2 and u2v by a factor of four. Equations (10) 
and (11) become 

Ati = ;m213,3,&2rv2 (13) 

Ati = +n213/3,&u2a (14) 

For oscillations of equal invariant value in both planes (i.e. v z 
U) the ratio of the coupling term to the u3 term is 4@,,/ps, 
which is of order one for FODO lattices. The coupling effect on 
the dynamic aperture from tracking doesn’t seem to increase 
that much as a result. 

For the other case, gy > ,3=, the largest term is the y3 term, 
which vanishes when the same octupolc strength 0 = -+m212 
is used. Note that the sign of the octupoles are the same in both 
cases. The reason is t,hat the main nonlinear effect produced 
by the interaction of two sextupoles must always scale with the 
product of the sextupole strengths. In the case of sextupole self- 
interaction, the strength is squared, and the sign disappears. 

A. Dynnmzc Aperture with Octupolar Correction 

The octupole correction described above will be tested by 
tracking the damping ring lattice with an octnpole family COT- 
recting each sextupole family. The damping ring uses two sex- 
tupole families. To simplify the discussion the sextupoles that 
correct the horizontal chromaticity are called SF sextupoles 
and the SF-correcting octupoles, OF octupoles. Similarly, the 
sext.upoles that correct. the vertical chromaticitp are called SD 
and the correcting octupoles, OD octupoles. Figure 1 shows 
schematically where the SF sextupoles are placed relative t,o 
the focusing quadrupoles within the 90” FODO cell achromat 
of the damping ring lattice. The required int,egrat#ed st,rengt,hs 
of the octupoles are listed in Table 1. Ideally the octupolar 
field should be superimposed on the sextupole field for proper 
cancellation of aberration terms. In the tracking the octupoles 
were rnorlelecl as a thin-lens inserted in the center of each sex- 
tupole. Also, the sextupoles in the tracking were each modeled 
as two kicks spaced 1/2 apart. In this approximation the third- 
order aberrat,ion t.erm of the sext,upole is reduced by a factor 
of B/I. The correcting octupole strengths are adjusted to call- 
ccl the third-order aberration terms of the two-kick sextupole. 
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Figure 1 

Achromat module for SF sest,upoles 

Table 1 

Required octupole strength for correction 

Associated sextupole 

Octupole 01 

(me3) (J’) (1) 

OF 41.3 -16.6 0.3 

OD 43.8 17.1 0.3 

The difference in strength between the two-kick model and the 
uniform model should not change the conclusions. 

One can look at the octupole correction in stages. First the 
octupoles (OF) that correct the SF’s where /3= >> py are in- 
serted. The calculated dynamic aperture for /3*=12.2 m and 
&,=2.2 m is shown in Figure 2. A large improvement is ob- 
served in the stability in the horizontal plane! as one would 
expect from equation (IO), and none in the vertical plane since 
the cancelled v3 term in equation (11) is very small. The un- 
corrected SD’s are responsible for the vert.ical aperture limit. 
The OF octupole also has the effect of correcting the horizon- 
tal tune shift with amplitude. When the octupoles (OD) that 
correct the SD’s are inserted where & > /IL (see Figure 3) the 
dynamic aperture in the vertical direction is improved. 

a SF (only) m:ln k!n!S :3R:~Ef. 

. SF ard SD mcrrr:k: 
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Figrlrc 2 

Dynamic apcbrture wit.11 SF-correcting act upolr 

When bot,h octupole families are turned on (Fig. 4), the 
stability along both axes is improvPt1 comparrd to thr case with 
no octupoles. However, the dynamic aprrture along both axes 
is smaller than the best possible values achievc~tl when only 
one octupole family is used. There is no improvement in the 
area of t.he .x-y plane where both T and y are large. This is 
understandable because t,he octupoles do not remov? nonlinear 
coupling, but in fact increase it. 

The dvnamic aperture can be improved (up to 40%) and 
shaped with octupoles according t.o 011~‘s n?ed. For instance 
if only horizontal aperture is rcqnired, then only the octupoles 
assoclat,ed with the SF sestnpoles should he turned on. 

As an aside, a straightforward way of reshaping the dynamic 
apert,ure would be to redistribute the number of SF modules 
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Figure 3 
Dynamic aperture with SD-correcting octupole. 
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Figure 4 
Dynamic aperture with SF- and SD-correcting octupole. 

and SD modules. If for some reason the horizontal dynamic ac- 
ceptance needs to be much greater than the vertical one, then 
the achromats used for SD sextupoles can be converted over to 
SF sextupoles. Repartitioning the modules in this way would 
reduce the individual SF sextupole strength and increase the in- 
dividual SD sextupole strength. The horizontal dynamic aper- 
ture will t.hen increase at the expense of the vertical dynamic 
aperture. 

IV. ,LZPPLICATION OF IL~~ODIFIED SEXTUPOLES 

i\fter the above work with octupole correction was com- 
pleted, a report on the design of modified sextupole magnets 
for dynamic aperture improvement in storage rings was pub- 
lished by Cornacchia and Halbach[2]. They propose reshaping 
the poles of sextupoles in order to reduce the magnetic field 
along a chosen transverse direction? while preserving the sex- 
t,upole field symmetry near the axis. Outlying particles of a 
stored gaussian beam would feel a weaker nonlinear field and 
follow a stabler trajectory, while the core of the beam feels the 
regular sextupole field. This has the effect of increasing the dy- 
namic aperture. While the chromaticity of the core of the beam 
is corrected. the chromaticity of large-amplitude orbits is not. 
Fortunately. the head-tail instability, for which the chromaticity 
correction is needed, is a collective effect, and it’s not necessary 
for all of the beam to have zero or positive chromaticity. 

Cornacchia and Halbach mention many possible field distri- 
butions for modified sextupoles. A moclified sextupole field de- 
sign that is probably the easiest to implement is the following[2]: 

B’ = B, - iB, = -iA.z’ exp(K;t2) (15) 

where z = z + iy, A is a constant, and ri is a decay parameter 

to be adjusted. Because of the exp(Kz’) factor this sextupole 
is called a gaussian sextupole. 

If K. = 0 we have an ordinary sextupole field. For 6 < 0, the 
sextupole field eventually decays along the horizontal axis, but 
grows indefinitely along the the vertical axis, while the reverse is 
true for n > 0. It would seem that the dynamic aperture would 
increase in one plane at the expense of the other. However, ,& 
and py are normally very different at sextupoles. One finds that 
the SF family of sextupoles (where p2 > p,) should have n < 0, 
;t,,th,“t>tF SD family of sex!upoles (where py > PI) should 

. Smce the gausslan sextupole 1s very non-hnear 
and not a simple multipole, its study using matrix elements is 
difficult. It is therefore difficult to predict which absolute value 
of )i: will improve the dynamic aperture the most for a given 
lattice. A rough estimate would be to set /c such that 16~~ z 
-1 at the dynamic aperture limits measured at the sextupole 
position. 

I optimized by trial and error the dynamic aperture for the 
damping ring, treating IC for each of the sextupole families as 
independent adjustable parameters. The dynamic aperture for 
the optimal gaussian sextupoles with KsF = -75 me2 and last 
= 250 m-* is shown in Figure 5. Again, the dynamic aperture 
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Figure 5 
Dynamic aperture with gaussian sextupole. 

is limited by sextupole lrngth effects. In this case however, the 
dynamic apert.ure improvement along both axes (about 40%) is 
better than that of octupole correction. 

v. CONCLUSION 

The large dynamic aperture of non-interleaved achromat- 
based lattices can be improved further with correcting oc- 
tupoles. The modified gaussian sextupole was also successfully 
applied to the low-emittance damping ring, and may be worth 
studying further. 
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