nag_opt_one_var_deriv (e04bbc)

1. Purpose

nag_opt_one_var_deriv (e04bbc) searches for a minimum, in a given finite interval, of a continuous function of a single variable, using function and first derivative values. The method (based on cubic interpolation) is intended for functions which have a continuous first derivative (although it will usually work if the derivative has occasional discontinuities).
2. Specification

```
#include <nag.h>
#include <nage04.h>
void nag_opt_one_var_deriv(void (*funct)(double xc, double *fc,
                                    double *gc, Nag_Comm *comm),
    double e1, double e2, double *a, double *b,
    Integer max_fun, double *x, double *f,
    double *g, Nag_Comm *comm, NagError *fail)
```


3. Description

nag_opt_one_var_deriv is applicable to problems of the form:

$$
\text { Minimize } \quad F(x) \text { subject to } a \leq x \leq b
$$

when the first derivative $d F / d x$ can be calculated. nag_opt_one_var_deriv normally computes a sequence of x values which tend in the limit to a minimum of $F(x)$ subject to the given bounds. It also progressively reduces the interval $[a, b]$ in which the minimum is known to lie. It uses the safeguarded quadratic-interpolation method described in Gill and Murray (1973).
The user must supply a function funct to evaluate $F(x)$ and its first derivative. The parameters e1 and $\mathbf{e 2}$ together specify the accuracy

$$
\operatorname{Tol}(x)=\mathbf{e} \mathbf{1} \times|x|+\mathbf{e} \mathbf{2}
$$

to which the position of the minimum is required. Note that funct is never called at any point which is closer than $\operatorname{Tol}(x)$ to a previous point.

If the original interval $[a, b]$ contains more than one minimum, nag_opt_one_var_deriv will normally find one of the minima.

4. Parameters

funct

The function funct, supplied by the user, must calculate the values of $F(x)$ and $d F / d x$ at any point x in $[a, b]$.
The specification of funct is:

```
void funct(double xc, double *fc, double *gc, Nag_Comm *comm)
    xc
            Input: x, the point at which the values of F and dF/dx are required.
    fc
            Output: the value of the function F}\mathrm{ at the current point }x\mathrm{ .
    gc
            Output: the value of the first derivative }dF/dx\mathrm{ at the current point }x\mathrm{ .
    comm
            Pointer to structure of type Nag_Comm; the following members are relevant to
            funct.
            first - Boolean
                    Input: will be set to TRUE on the first call to funct and FALSE for all
                    subsequent calls.
            nf - Integer
            Input: the number of calls made to funct so far.
            user - double *
            iuser - Integer *
            p - Pointer
                The type Pointer will be void * with a C compiler that defines void *
                    and char * otherwise.
                    Before calling nag_opt_one_var_deriv these pointers may be allocated
                    memory by the user and initialized with various quantities for use by funct
                    when called from nag_opt_one_var_deriv.
```

Note: funct should be tested separately before being used in conjunction with nag_opt_one_var_deriv.

Input: the relative accuracy to which the position of a minimum is required. (Note that since $\mathbf{e} \mathbf{1}$ is a relative tolerance, the scaling of x is automatically taken into account.)

It is recommended that e1 should be no smaller than 2ϵ, and preferably not much less than $\sqrt{\epsilon}$, where ϵ is the machine precision.
If $\mathbf{e} \mathbf{1}$ is set to a value less than ϵ, its value is ignored and the default value of $\sqrt{\epsilon}$ is used instead. In particular, the user may set $\mathbf{e} \mathbf{1}=0.0$ to ensure that the default value is used.

Input: the absolute accuracy to which the position of a minimum is required. It is recommended that $\mathbf{e} \mathbf{2}$ should be no smaller than 2ϵ.

If $\mathbf{e} \mathbf{2}$ is set to a value less than ϵ, its value is ignored and the default value of $\sqrt{\epsilon}$ is used instead. In particular, the user may set $\mathbf{e} \mathbf{2}=0.0$ to ensure that the default value is used.
a
Input: the lower bound a of the interval containing a minimum.
Output: an improved lower bound on the position of the minimum.
b
Input: the upper bound b of the interval containing a minimum.
Output: an improved upper bound on the position of the minimum.
Constraint: $\mathbf{b}>\mathbf{a}+\mathbf{e} \mathbf{2}$. Note that the value $\mathbf{e} \mathbf{2}=\sqrt{\epsilon}$ applies here if $\mathbf{e 2}<\epsilon$ on entry to nag_opt_one_var_deriv.
max_fun
Input: the maximum number of calls to funct which the user is prepared to allow.
The number of calls to funct actually made by nag_opt_one_var_deriv may be determined by supplying a non-NULL parameter comm (see below) and examining the structure member $\mathbf{n f}$ on exit.
Constraint: max_fun ≥ 2. (Few problems will require more than 20 function calls.)
x
Output: the estimated position of the minimum.
f
Output: the value of F at the final point \mathbf{x}.
g
Output: the value of the first derivative $d F / d x$ at the final point \mathbf{x}.
comm
Input/Output: structure containing pointers for communication to user-supplied functions; see the above description of funct for details. The number of times the function funct was called is returned in the member $\mathbf{n f}$.
If the user does not need to make use of this communication feature, the null pointer NAGCOMM_NULL may be used in the call to nag_opt_one_var_deriv; comm will then be declared internally for use in calls to user-supplied functions.
fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE_2_REAL_ARG_GE

On entry, $\mathbf{a}+\mathbf{e} \mathbf{2}=\langle$ value \rangle while $\mathbf{b}=\langle$ value \rangle.
These parameters must satisfy $\mathbf{a}+\mathbf{e} \mathbf{2}<\mathbf{b}$.

NE_INT_ARG_LT

On entry, max_fun must not be less than 2: max_fun $=\langle$ value \rangle.

NW_MAX_FUN

The maximum number of function calls, 〈value〉, have been performed.
This may have happened simply because max_fun was set too small for a particular problem, or may be due to a mistake in the user-supplied function, funct. If no mistake can be found in funct, restart nag_opt_one_var_deriv (preferably with the values of \mathbf{a} and \mathbf{b} given on exit from the previous call to nag_opt_one_var_deriv).

6. Further Comments

Timing depends on the behaviour of $F(x)$, the accuracy demanded, and the length of the interval $[a, b]$. Unless $F(x)$ and $d F / d x$ can be evaluated very quickly, the run time will usually be dominated by the time spent in funct.
If $F(x)$ has more than one minimum in the original interval [a, b], nag_opt_one_var_deriv will determine an approximation x (and improved bounds a and b) for one of the minima.

If nag_opt_one_var_deriv finds an x such that $F\left(x-\delta_{1}\right)>F(x)<F\left(x+\delta_{2}\right)$ for some $\delta_{1}, \delta_{2} \geq \operatorname{Tol}(x)$, the interval $\left[x-\delta_{1}, x+\delta_{2}\right.$] will be regarded as containing a minimum, even if $F(x)$ is less than $F\left(x-\delta_{1}\right)$ and $F\left(x+\delta_{2}\right)$ only due to rounding errors in the user-supplied function. Therefore funct should be programmed to calculate $F(x)$ as accurately as possible, so that nag_opt_one_var_deriv will not be liable to find a spurious minimum. (For similar reasons, $d F / d x$ should be evaluated as accurately as possible.)

6.1. Accuracy

If $F(x)$ is δ-unimodal for some $\delta<\operatorname{Tol}(x)$, where $\operatorname{Tol}(x)=\mathbf{e} \mathbf{1} \times|x|+\mathbf{e} \mathbf{2}$, then, on exit, x approximates the minimum of $F(x)$ in the original interval $[a, b]$ with an error less than $3 \times \operatorname{Tol}(x)$.

6.2. References

Gill P E and Murray W (1973) Safeguarded steplength algorithms for optimization using descent methods, NPL Report NAC 37, National Physical Laboratory.

7. See Also

nag_opt_one_var_no_deriv (e04abc)

8. Example

A sketch of the function

$$
F(x)=\frac{\sin x}{x}
$$

shows that it has a minimum somewhere in the range [3.5,5.0]. The example program below shows how nag_opt_one_var_deriv can be used to obtain a good approximation to the position of a minimum.
8.1. Program Text

```
/* nag_opt_one_var_deriv(e04bbc) Example Program.
*
* Copyright }1998\mathrm{ Numerical Algorithms Group.
*
* Mark 5, 1998.
*
*/
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <math.h>
#include <nage04.h>
#ifdef NAG_PROTO
static void funct(double xc, double *fc, double *gc, Nag_Comm *comm);
#else
static void funct();
#endif
```

\#ifdef NAG_PROTO
static void funct(double xc, double *fc, double *gc, Nag_Comm *comm)
\#else
static void funct(xc, fc, gc, comm)
double xc, *fc, *gc;
Nag_Comm *comm
\#endif
\{
*fc $=\sin (x c) / x c$;
gc $=(\cos (x c)- f c) / x c ;$
\}
/* funct */
main()
\{
double a, b;
double e1, e2;
double x, f, g;
Integer max_fun;
Nag_Comm comm;
static NagError fail;
Vprintf("eO4bbc Example Program Results.\n\n");
/* e1 and e2 are set to zero so that e04abc will reset them to
* their default values
*/
e1 = 0.0;
e2 = 0.0;
/* The minimum is known to lie in the range (3.5, 5.0) */
a $=3.5$;
b $=5.0$;
/* Allow 30 calls of funct */
max_fun = 30;
fail.print = TRUE;
e04bbc (funct, e1, e2, \&a, \&b, max_fun, \&x, \&f, \&g, \&comm, \&fail);
Vprintf("The minimum lies in the interval $\% 7.5 f$ to $\% 7.5 f . \backslash n ", ~ a, ~ b) ; ~$

```
    Vprintf("Its estimated position is %7.5f,\n", x);
    Vprintf("where the function value is %9.4e\n",f);
    Vprintf("and the gradient is %9.4e.\n",g);
    Vprintf("%1ld function evaluations were required.\n", comm.nf);
    exit(EXIT_SUCCESS);
}
```

8.2. Program Data

None.

8.3. Program Results

e04bbc Example Program Results.
The minimum lies in the interval 4.49341 to 4.49341.
Its estimated position is 4.49341 ,
where the function value is $-2.1723 \mathrm{e}-01$
and the gradient is $4.3239 \mathrm{e}-16$.
6 function evaluations were required.

