NAG C Library Function Document

nag real polygamma (s14aec)

1 Purpose

nag_real_polygamma (s14aec) returns the value of the kth derivative of the psi function $\psi(x)$ for real x and $k = 0, 1, \ldots, 6$.

2 Specification

double nag_real_polygamma (double x, Integer k, NagError *fail)

3 Description

This routine evaluates an approximation to the kth derivative of the psi function $\psi(x)$ given by

$$\psi^{(k)}(x) = \frac{d^k}{dx^k} \psi(x) = \frac{d^k}{dx^k} \bigg(\frac{d}{dx} \mathrm{log_e} \Gamma(x) \bigg),$$

where x is real with $x \neq 0, -1, -2, \ldots$ and $k = 0, 1, \ldots, 6$. For negative non-integer values of x, the recurrence relationship

$$\psi^{(k)}(x+1) = \psi^{(k)}(x) + \frac{d^k}{dx^k} \left(\frac{1}{x}\right)$$

is used. The value of $\frac{(-1)^{k+1}\psi^{(k)}(x)}{k!}$ is obtained by a call to a routine based on PSIFN in Amos (1983).

Note that $\psi^{(k)}(x)$ is also known as the *polygamma* function. Specifically, $\psi^{(0)}(x)$ is often referred to as the *digamma* function and $\psi^{(1)}(x)$ as the *trigamma* function in the literature. Further details can be found in Abramowitz and Stegun (1972).

4 Parameters

1: \mathbf{x} – double Input

On entry: the argument x of the function.

Constraint: x must not be 'too close' (see Section 5) to a non-positive integer.

2: \mathbf{k} - Integer Input

On entry: the function $\psi^{(k)}(z)$ to be evaluated.

Constraint: $0 \le k \le 6$.

3: fail – NagError * Input/Output

The NAG error parameter (see the Essential Introduction).

5 Error Indicators and Warnings

NE INT

On entry, $\mathbf{k} = \langle value \rangle$. Constraint: $0 \le \mathbf{k} \le 6$.

[NP3491/6] s14aec.1

NE REAL

```
On entry, \mathbf{x} = \langle value \rangle. Constraint: \mathbf{x} must not be 'too close' to a non-positive integer. That is, |x - \operatorname{nint}(x)| \geq machine precision \times \operatorname{nint}(x)
```

NE UNDERFLOW LIKELY

The evaluation has been abandoned due to the likelihood of underflow. The result is returned as zero.

NE OVERFLOW LIKELY

The evaluation has been abandoned due to the likelihood of overflow. The result is returned as zero.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

6 Further Comments

6.1 Accuracy

All constants in the underlying functions are given to approximately 18 digits of precision. If t denotes the number of digits of precision in the floating-point arithmetic being used, then clearly the maximum number in the results obtained is limited by $p = \min(t, 18)$. Empirical tests by Amos (1983) have shown that the maximum relative error is a loss of approximately two decimal places of precision. Further tests with the function $-\psi^{(0)}(x)$ have shown somewhat improved accuracy, except at points near the positive zero of $\psi^{(0)}(x)$ at x = 1.46..., where only absolute accuracy can be obtained.

6.2 References

Amos D E (1983) Algorithm 610: A portable FORTRAN subroutine for derivatives of the psi function *ACM Trans. Math. Software* **9** 494–502

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions Dover Publications (3rd Edition)

7 See Also

None.

8 Example

The example program evaluates $\psi^{(2)}(x)$ at x=2.5, and prints the results.

8.1 Program Text

```
/* nag_real_polygamma (s14aec) Example Program.

*
 * Copyright 2000 Numerical Algorithms Group.

*
 * NAG C Library

*
 * Mark 6, 2000.

*/

#include <stdio.h>
#include <nag.h>
```

s14aec.2 [NP3491/6]

```
#include <nag_stdlib.h>
#include <nags.h>
int main(void)
 double x, y;
 Integer exit_status=0;
 NagError fail;
 Integer k;
 INIT_FAIL(fail);
 Vprintf("s14aec Example Program Results\n\n");
 /* Skip heading in data file */
 Vscanf("%*[^\n]");
                           (D^K/DX^K)psi(X)\n\n');
 Vprintf("\n X
                     K
 while(scanf("%lf %ld%*[^\n]", &x, &k) != EOF)
     y = s14aec (x, k, &fail);
     if (fail.code == NE_NOERROR)
       Vprintf("%5.1f %5ld
                            12.4e\n'', x, k, y);
     else
       {
         Vprintf("Error from s14aec.\n%s\n", fail.message);
          exit_status = 1;
         goto END;
       }
    }
END:
 return exit_status;
}
```

8.2 Program Data

```
s14aec Example Program Data
1.0    0
0.5    1
-3.6    2
8.0    3
2.9    4
-4.7    5
-5.4    6 : Values of x and k
```

8.3 Program Results

s14aec Example Program Results

```
Χ
        K
          (D^K/DX^K)psi(X)
1.0
        0
             -5.7722e-01
0.5
       1
              4.9348e+00
-3.6
       2
             -2.2335e+01
              4.6992e-03
8.0
       3
              -1.5897e-01
2.9
       4
       5
-4.7
              1.6566e+05
-5.4
       6
              4.1378e+05
```

[NP3491/6] s14aec.3 (last)