NAG C Library Function Document

nag bessel k alpha scaled (s18ehc)

1 Purpose

nag_bessel_k_alpha_scaled (s18ehc) returns a sequence of values for the scaled modified Bessel functions $e^x K_{\alpha+n}(x)$ for real x>0, selected values of $\alpha\geq 0$ and $n=0,1,\ldots,N$.

2 Specification

3 Description

This routine evaluates a sequence of values for the scaled modified Bessel function of the second kind $e^x K_\alpha(x)$, where x is real and non-negative and $\alpha \in \{0, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{2}{3}, \frac{3}{4}\}$ is the order. The (N+1)-member sequence is generated for orders $\alpha, \alpha+1, \ldots, \alpha+N$.

4 Parameters

1: \mathbf{x} – double Input

On entry: the argument x of the function.

Constraint: $\mathbf{x} > 0.0$.

ia – Integer
 ja – Integer
 Input

On entry: the numerator i and denominator j, respectively, of the order $\alpha = i/j$ of the first member in the required sequence of function values. Only the following combinations of pairs of values of i and j are allowed:

```
i=0 and j=1 corresponds to \alpha=0; i=1 and j=2 corresponds to \alpha=\frac{1}{2}; i=1 and j=3 corresponds to \alpha=\frac{1}{3}; i=1 and j=4 corresponds to \alpha=\frac{1}{4}; i=2 and j=3 corresponds to \alpha=\frac{2}{3}; i=3 and j=4 corresponds to \alpha=\frac{3}{4}.
```

Constraint: ia and ja must constitute a valid pair (ia,ja) = (0,1), (1,2), (1,3), (1,4), (2,3) or (3,4).

4: \mathbf{nl} – Integer Input

On entry: the value of N. Note that the order of the last member in the required sequence of function values is given by $\alpha + N$.

Constraint: $0 \le \mathbf{nl} \le 100$.

5: $\mathbf{b}[\mathbf{nl+1}]$ – double Output

On exit: with fail.code = NE_NOERROR or fail.code = NW_SOME_PRECISION_LOSS, the required sequence of function values: $\mathbf{b}(n)$ contains $K_{\alpha+n}(x)$ for $n=0,1,\ldots,N$.

[NP3491/6] s18ehc.1

6: **fail** – NagError *

Input/Output

The NAG error parameter (see the Essential Introduction).

5 Error Indicators and Warnings

NE REAL

```
On entry, \mathbf{x} = \langle value \rangle. Constraint: \mathbf{x} > 0.0.
```

NE INT

```
On entry, \mathbf{nl} = \langle value \rangle.
Constraint: 0 \leq \mathbf{nl} \leq 100.
```

NE INT 2

```
On entry, ia = <value>, ja = <value>.
Constraint: ia and ja must constitute a valid pair (ia,ja).
```

NE OVERFLOW LIKELY

The evaluation has been abandoned due to the likelihood of overflow.

NW SOME PRECISION LOSS

The evaluation has been completed but some precision has been lost.

NE TOTAL PRECISION LOSS

The evaluation has been abandoned due to total loss of precision.

NE TERMINATION FAILURE

The evaluation has been abandoned due to failure to satisfy the termination condition.

NE INTERNAL ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

6 Further Comments

6.1 Accuracy

All constants in the underlying function are specified to approximately 18 digits of precision. If t denotes the number of digits of precision in the floating-point arithmetic being used, then clearly the maximum number of correct digits in the results obtained is limited by $p=\min(t,18)$. Because of errors in argument reduction when computing elementary functions inside the underlying function, the actual number of correct digits is limited, in general, by p-s, where $s\approx \max(1,|\log_{10}x|)$ represents the number of digits lost due to the argument reduction. Thus the larger the value of x, the less the precision in the result.

6.2 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions Dover Publications (3rd Edition)

7 See Also

None.

s18ehc.2 [NP3491/6]

8 Example

The example program evaluates $e^x K_0(x)$, $e^x K_1(x)$, $e^x K_2(x)$ and $e^x K_3(x)$ at x = 0.5, and prints the results.

8.1 Program Text

```
/* nag_bessel_k_alpha_scaled (s18ehc) Example Program.
* Copyright 2000 Numerical Algorithms Group.
* NAG C Library
* Mark 6, 2000.
#include <math.h>
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nags.h>
int main(void)
 double alpha;
 double b[101];
 double x;
 Integer i;
 Integer ia;
 Integer exit_status=0;
 Integer ja;
 Integer nl;
 NagError fail;
 INIT_FAIL(fail);
 Vprintf("s18ehc Example Program Results\n\n");
  /* Skip heading in data file */
 Vscanf("%*[^\n]");
 while (scanf("%lf %ld %ld %ld%*[^\n]", &x, &ia, &ja, &nl) != EOF)
     Vprintf("\n x ia
                              jа
                                   n1\n\n");
     Vprintf("%4.1f%6ld%6ld%6ld\n\n", x, ia, ja, nl);
      s18ehc (x, ia, ja, nl, b, &fail);
      if (fail.code == NE_NOERROR)
         \label{lem:printf("n Requested values of exp(X)*K_alpha(X)\n'n");} \\
          alpha = (double) ia / (double) ja;
         Vprintf(" alpha
                                exp(X)*K_alpha(X)\n");
          for (i = 0; i \le nl; ++i)
             Vprintf(" %12.4e
                                 12.4e\n'', alpha, b[i]);
              alpha += 1.;
        }
      else
          Vprintf("Error from s18ehc.\n%s\n", fail.message);
```

[NP3491/6] s18ehc.3

8.2 Program Data

```
s18ehc Example Program Data
0.5  0  1  3 : Values of x, ia, ja and nl
```

8.3 Program Results

s18ehc Example Program Results

```
x ia ja nl
0.5 0 1 3
```

Requested values of exp(X)*K_alpha(X)

```
alpha exp(X)*K_alpha(X)
0.0000e+00 1.5241e+00
1.0000e+00 2.7310e+00
2.0000e+00 1.2448e+01
3.0000e+00 1.0232e+02
```

s18ehc.4 (last) [NP3491/6]