Lizard User M anual

DinoFerrero Merlino
CERN IT/API

May 2001

Table of Contents

1. Overview
What is Lizard?
Motivation
2.Lizard at a glance
Lizard current implementation
Scripting language
Why Python
Components in Lizard
Default Lizard environment
Default Components
Shortcuts
Simple examples
Plotting a histogram
Fitting a histogram
Plotting vectors using several zones
Ntuple-like analysis
Getting help
3. A crash course on Python
Introduction
Scalar variables, functions, statements
Lists, control-flow statements and more
Python lists and more
Python control-flow statements
4. Working with histograms
Introduction
Transient (in-memory) histograms
Creating and deleting histograms in memory
Histogram IDs
Persistent (on-disk) histograms
Selecting the database and creating directory structure(optional)
Storing histograms in database
Removing histograms from database
Retrieving histograms from database
Lizard Hi st ogr amobjects
Methods common to all Lizand st ogr amobjects
Methods common to Lizard 18 st ogr amobjects
Methods for Lizard 2D and 3B st ogr amobjects
5. Working with Vectors



Introduction
Role of vectors in Lizard
Using theVect or Manager
Creatingvect or from histograms
Retrieving avect or from manager
Removing a/ect or from manager
Copying avect or
Creating avect or from Python lists
Writing/reading back &ect or from ASCII file
Operations on vectors
Translating and scaling\&ct or
Arithmetic operations with othefect or
Arithmetic operations with scalars
ThePoi nt inside vectors
Retrieving single points out of a vector
Modifying points in a vector
The vector'sannot at i on
Retrieving vector's\nnot at i on as a Lizard object
Modifying vector'sAnnot at i on
6. Working with Ntuples
Introduction
TheNt upl eManager component
The defauli\t upl eManager
Finding ntuples
Defining chains
Operations on ntuples
Scanning ntuples
Probing ntuples
Plotting ntuple attributes or attributes’ functions
Ntuple plot shortcuts
Projecting over @ynami cHi st ogr am
Projecting over a knowr st ogr am
Projecting over a 2Bi st ogr am
Scatter plots
More on C++ expressions used by ntuple methods
Caching expressions
Using parameters to avoid compiling code
7.Using theFi t t er component
Introduction
Fitting histograms using a shortcut
Fitting with simple functions and sum of functions (general case)
More about fit parameters
Changing the fit range
8. Using therl ot t er component
Introduction
Working with zones
Plotting vectors on zones
Data representations and properties
Zone properties
Dataset (curve) properties
Dataset representations



Changing markers
Style properties
Line properties
Fill area properties
Working with text
Coordinates’ spaces
Adding titles and text
Showing text in Zone coordinates
Using TextStyle to change text appeareance
Mathematical formulas and special symbols
A quick introduction to MathML
Examples of MathML use in Lizard
9. Using theanal yzer component
Introduction
Use of shared libraries
Building a shared library
Interaction between Lizard and the user code
Making a shared library visible to programs
SomeaAnal yzer examples
The simplest example
Structuring user code and compiling via gmake
Interacting with thedi st ovanager component
Ntuple analysis using thaal yzer
Introduction
Key concepts of Lizard ntuple analysis in C++
An example of Lizard ntuple analysis in C++
Writing ntuples using thanal yzer
Fitting using thenal yzer
Introduction
Key concepts of using thaal yzer for fitting
Bibliography and Useful Links

Chapter 1. Overview

Table of Contents

What is Lizard?
Motivation

What isLizard?

Lizard is a new Interactive Analysis Environment (se&ard Home Pagér details) produced by
the IT/API group at CERN. The aim of the Lizard project is to produce an analysis tool whic
be easily integrated in a C++ based environment and provides functionalities comparable v
core of PAW.

M otivation

The Lizard aim is to provide a package that:



® provides the core functionalities of an Interactive Analysis Environment
(histograms,ntuple,fitting,graphics,scripting)

® can easily integrate experiment-specific code

® is based on a simple but flexible architecture

® allows to load only the components really required

® can be extended by skilled users in a relatively simple manner

In order to achieve such a degree of flexibility we opted fmnaponent-based system whose
binding to the scripting language are automatically generaté&dlgime 1.1the main structure of
Lizard is depicted.

Figure 1.1. Relations among user, scripting, Lizard and components

Interacts with Scrpting
[ language
interpreter

| Hosts _
Huosts \Q Optional

;?-"

Lizard . ’
"commander” Experiment ;
specific
modules
ses ‘
%7 dses i
Lo
1 azrwwyd
Lizard Experiment
Component Uses specific code
(C+e)

For more details see the chapter on Architecture.

Chapter 2. Lizard at a glance

Table of Contents

Lizard current implementation
Scripting language
Why Python
Components in Lizard
Default Lizard environment
Default Components
Shortcuts
Simple examples
Plotting a histogram
Fitting a histogram
Plotting vectors using several zones



Ntuple-like analysis
Getting help

This chapter provides an overview of Lizard features. The package comes with a set of exe
programs and we plan to have a step-by-step tutorial available at some point. Nevertheless
chapter should provide an overview of Lizard capabilities as well as a first introduction to its
model.

Lizard current implementation
Scripting language

Although Lizard could be easily embedded in any mainstream scripting language (see
ARCHITECTURE) such as Python, Tcl, Perl, Ruby etc., the current implementation is usin¢
Python. Thus Lizard is a ‘guest’ of a standard Python 2.0 interpreter, which means that all t
power of Python is available (sBgthon resource®r details) to implement more complex user
scripts.

Why Python

Why to chose Python over any other language? The following text, taken frétythoe summatr
outlines Python’s main features:

Python is an interpreted, interactive, object-oriented
programming language. It is often compared to Tcl, Perl, Scheme or Java.

Python combines remarkable power with very clear syntax. It has
modules, classes, exceptions, very high level dynamic data types, and
dynamic typing. There are interfaces to many system calls and libraries,
aswell asto various windowing systems (X11, Motif, Tk,

Mac, MFC). New built-in modules are easily written in C or

C++. Pythonisalso usable as an extension language for applications
that need a programmable interface.

The Python implementation is portable: it runs on many brands of
UNIX, on Windows, DOS, OS2, Mac, Amiga...

Python is copyrighted but freely usable and distributable, even for
commercial use.

From our point of view the outstanding pros are:

® Object-oriented language

® relatively simple syntax

® freely available and supported by a large community
® casy to integrate with C++

® easy to extend (dynamic loading of modules etc.)

These features overweigth the few cons we found, such as the ‘original’ indenting scheme.



details on Python are provided@hapter 3

Componentsin Lizard

As briefly stated in théhe section called "Motivatiorthe user works inside a standard Python
interpreter. During the Lizard startup, its "components" are dynamically loaded and become
available as Python objects to work with. We can roughly distinguish three kinds of Lizard ¢

Data Objects
Vectors, Histograms, Ntuples
Manager s
Entities responsible for creating, bookkeping and deleting Data Objects.
Acti ve Components
Entities responsible for performing tasks, such as plotting, fitting, executing external C
code.

During Lizard startup the default Managers and Active components are created on behalf o
user.

Working with Lizard mainly consists of asking Managers to create Data Objects and using /
components to transform them. As an example a user may:

1. ask theHi st oManager to retrieve an
2. Hi st ogr aminstance from the database and invoke the
3. Plotter to draw it on the screen.

Although it sounds complex it's actually very easy, as in this small script:

# Ask histo manager to load a histogram h is the handl e of histogram object
h = hm| oadlD("10")

# Transformit into a vector (suitable for plotting)

v = vm fromlD(h)

# Now ask the Plotter to draw it

pl . plot(v)

# Note we could have used a shortcut to hide the vector transformation
# Shortcuts are Python functions.
hpl ot ( h)

This object-oriented approach may seem more cumbersome e.g. than "monolithic" user int
such as in PAW, where there’s only one "global” listener to every user request. Actually it's
difficult and it allows to load only the components required for different kind of analysis (anc
switch implementations at run-time...).

Default Lizard environment

As explained in the previous section, during Lizard startup, a set of components is pre-load
defaultvanager andActi ve Conponent instances are created. This sections explains exactly
what's defined at Lizard startup.



Default Components
TheTable 2.0summarizes the components created at startup and their role:

Table 2.0. Default components

Identifier| Classtype
hm HistoManager
vm VectorManager
ntm NtupleManager
pl Plotter
Shortcuts

Shortcuts are Python function that implement in a single call several interactions with Lizart
components and objects. Their main purpose is to reduce the amount of typing required to
simple operations. ThEable 2.1summarizes the shortcuts defined at startup, their purpose a
their return value (if any).

Table 2.1. Shortcut



Name Purpose Return value
gives help on available methods of classe

help() used in Lizard

exit() exit from Lizard

exe(filename) Execute a Python program

hist() s"ele(_:t rlllistogram representation for plotting
("stairs")

err() select error bar representation for plotting

line() select line representation for plotting

ylog() set Y axis to log

ylin() set Y axis to lin

xlog() set X axis to log

xlin() set X axis to lin

xgrid() draw "grid" lines perpendicular to X axis

ygrid() draw "grid" lines perpendicular to Y axis

grid() draw "grid" lines perpendicular to both axig

xygrid() draw "grid" lines perpendicular to both axig

histogram as a

hplot(_histo, opt="") [plot histogram hi st o VectorOfPoints

fits histogram hi st o with model_nodel
{IIGII’ IIEII’ IIPOII’ IIPlII, ...}

projects selectionsel of tuple_nt using cut
_cut (default none) into a 1D histogram an

hfit(_histo, _model) the projected histogram

cplotlD(_nt, _sel, fitted curve as a

_cut="") plots the histogram ectorOfPoints
wait() waits for user to typeget ur n (useful in

scripts between plots)
prompt(_pr) prompts user with questiormr whatever user typed

Simple examples

In this section we’ll see a few examples on how to do simple things in Lizard. In order to av
unnecessary details most operations will be done using the shortcuts, since that’'s exactly tl
purpose.

I mportant

The Python syntax uses thédot) to invoke methods and requires to specify a pair of ell{pses
after the method name, even if no argument are passed to the method (exactly as in C++).
C++, Python does not require the terminatinigemicolon). E.g.

ntmlistNuples()

Plotting a histogram



In order to plot an histogram we should first ‘book’ it then plot it. This is the script to do so:

# Ask histo manager to create a histogram h is the handl e of histogram object
# First paraneter is a short ID, then the title, the no. of bins and the range
h = hmcreatelD("10", "Enpty histogrant, 10,-5.,5.)

# Plot the enpty histogram using a shortcut

hpl ot (h)

Lines starting with# are comments, so we need exactly two lines of Python to book and plot
histogram. Empty histograms are not so useful, so an extra filling loop is worth:

# Create histogram
hl=hm createlD(10, "test 1",50,0., 500.)
# Fill it
for i in range(0.,500.):
hi.fill (i, 100.*exp(-(i-250.)**2/500.))

# The enpty line is necessary (to close the for |oop)!
hpl ot (h1)

The output of the script is shownhigure 2.1

Figure2.1. Plotting a 1D histogram



1000 —

g00 (—

600 —

400 (—

200 —

# Coordinate 425647 Y Coordinate 403822

Finally an example with a 2D histogram represented as a BOX plot (the size of each box is
proportional to the bin content):

# Book 2D hi stogram
h3 = hm create2D("20", "phi", 50, - 100, 100, 50, - 100, 100)
# R it
for x in range(-100,100.,1):
for y in range(-100,100.,1):
h3. fill(x,y, x*x+y*y)

# Pl ot histogram
hpl ot (h3)

The output of the script is shownhigure 2.2



Figure 2.2. Plotting a 2D histogram

= Qplotter IBE
100 o o o o o o
OOOQQoooOoooooor oogooQg
= |m | |mf )] (m |||
OOooooc EEEEEEE Cooooop,
OOogooooo0000000000o0o0opon! =
- Oo0000000gpoooooooocooooSoBa00oa0n,
OJgOoOoOO0000o000000000000000000000g]
Ofpgoooooooooooooooooopgpooooooopggfin
OOOOo00oooo0pQpooooooooogoooofooonfdioon L]
= OOO0OOoooO0O0O0O0oooOoooo0O00Oo0ocopnOoooo, =
[m]=] HHDDnnnuununnnnnnunnunununnnnunnﬂnHH [=]m|
Q000000000 QoooOooDo0000nonoooooo0ooooonoopgg
o0 |=3]|m|mlm|a} OO0O000O0OOoO0Scoc@oosooCOoooo@og ooooopooooog 8888
Oooo0000Oppooooopoecscooooeocoonooooopggoooobdoog
Opgooooooooeapgpppooooooooooopgooo®o000oopoooggas
OO00000ppoooooeee @@= = = == = = - nooooopooooononoOBBanm]
JooOoOo00Oppogooeorooo- - - - - oo ooopoooB0oo0oOooogQ
FMN0poOopoooocSooooninooon: 'ooaoton uﬂnﬂnDDDnDDDEuU
OJOOO0000gpooopoeoo- -« -« - -+ +-msooopooopgbioon DDEE
JOoOoOooooosSppoaoa u---uuuunnnnnnnE
[O0000ggpooooeao- g o - oooopgpooopgooodton
JE000000gopoogee o~ 'nnnnnuuDDDDDDDDEE
HOOOppoppooooocoooa ooooooonoooggooOl
[qOO00Odpgoooesoo- - --uunuuuunuuuunDEE
D L EDDDDUUU““DDBHB """ -eoopgpeO0000000
OO0000pQpoooooea- - g +op-0oe0pooogoooOdon
[JOooOoo00oO0fppeooo- - --ununnunﬂnnnDDDDEE
HOOOpoppoooosoooooa -omoooooopoopgogoooOl
_Huuunﬂﬂﬂnnuunn m - 'nunuuunnDDDDDDDEE
O00OQoopooooosecpgooao ooopp®eoooogoogg
OO0000Qgpooooe=se®=- - sgo- - - - - - - esessenoooogQooodng
[JoooooooeSggoooo: ©--- - - ---:.o0ooo0gOoOfo0o0o0000000
EL O0QQOooOoOOoOoScco-iogooo' 'oooor oeccoonooopgnooOoBdf
[JOoo0000O0gooooooo@@oo-° "-ooooooopnOooooooooooonm
NO000QpOpoooooecoopgpoooooooooopp @888 0000gogngofofc]
JACO0O000O0ppooopooeoeccocoooooooooopoooonndoOofonn
EDEFUUDDDDDDDUUUU“““DDDDnuﬂﬂnnuunnu““UﬂUUUDDDDDD L]
- OO0 0000gopooooooocoooooooooooooooopgpopoooOoofn
OQOo000000000pooooooooooooooo000o0oonooggg
O000oooooooooooooooooooooooooopgooooogon
- [oO000oooogppoooooooooopgooRooooooofopml L]
JOjoOoooooooocooooooooooooopgoooooggofs
HO000000QOoOo0 0000000000 000088000000
QgooOo000o0oooooooooooooooooon
OO0000QoOoOo0000ooooooooopoooonid
0080 0000000000000000000000d,
| |m [ ] oooooooo oot
= HHHHIEEEEDDDDDDDDEEEEIHHHH
1 |mfmim] E |mm|m
_1L 1 T 00T T 1
# Coordinate :  17.0183 Y Coordinate :  98.3078

Fitting a histogram

In this case we book the histogram, fill it and then fit it with a Gaussian. The use case is vel
(the fitter can easily retrieve the initial parameters of the Gaussian from the histogram),
nevertheless it represents probably the most used fit in real life:

# Create histogram

hl=hm creat elD( 10, "t est

# Rl it

for i in range(0.,500.):
hil.fill (i, 100.*exp(-(i-250.)**2/500.))

1"*,50,0., 500.)

# The enmpty line is necessary (to close the for |oop)!

# Activate sunmary information
pl.zoneOption ("option","stats")

# Fit the histogramand overlay the results
v2=hfit(h1,"G")

The output of the script is shownhigure 2.3

Figure 2.3. Fitting a histogram



1000 — D 10
Entries 00
= in hean £al
| RIS 15.5568
Ciyerflow 0
= Underflow 0
800 — 22/ NDF 0.6685 / 47
B amp 870,008 £ 152.779
fmean 249,939 + 0.255354
- Fms 15,7154 + 0.035314
GO0 |—
400 |—
z00 |—
] | | | | | | | | | | | | | | | | | | | |
0 100 200 300 400 500
® Coordinate - 326.509 % Coardinate ; 1038.78

Plotting vector s using sever al zones

Lizard vectors are the workhorse of the package. Singet theer andFi tt er componets work
with vectors, shortcuts silently convert them in vectors on behalf of the user. In this exampl
see how to plot vectors in several zones using some of the feature®iaftther .

# these are Python lists, equivalent to arrays
xvals = [0.,1.,2.,3.,4.,5.,6.,7.,8.,9.,10.]

yvals = [0.,1.,4.,9.,16.,25.,36.,49.,64.,81.,100.]
# Create a Lizard vector

vl = vm fronPy(xval s, yvals)

v2 = vmfronPy(xvals, yvals)

v2.mul (2.)

# Four zones



pl . zone( 2, 2)

# First zone
pl . plot(vl)

# Inplicit overlay on second zone
pl . plot(vl, v2)

# Now inverted on third zone (see zone linits)
pl.plot(v2,vl)

# Explicit overlay on fourth zone
pl . pl ot (vl)

pl .dataStyl e("linecol or", "blue")
pl . overlay(v2, 3)

pl .dataStyle("linecolor", "green")
pl . overlay(v3, 3)

# Reset col or
pl .dataStyle("linecolor","")

The output of the script is shownkigure 2.4

Figure 2.4. Plotting vectorsin several zones



100 [ 100 [
&0 &0
Bl G11]
40 40
20 z0
0 0
zo0 [ 100 |
150 [ ol
i 1]
100
40
50
20
I:l -l 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I:l ) 1 1 1 I 1 1 1 I 1 1 1 | 1 1 1
0 2 4 B ] 10 n z 4 B ] 10
¥ Coordinate - 0 Y Coordinate ; 0

In the first part of the script we see how to transform native Python data to a Lizard vector ¢
to multiply a vector by a scalar. Then we see how to plot a single vector, how to overlay twe
‘implicitly’, i.e. using the second parameter of the method and finally how to overlay an arbi
number of vectors. Notice that the first vector sets the scale for the zone (this behaviour ca
changed by setting a zone option).

Ntuple-like analysis

Lizard ntuples are currently basedldepODBMSTags (although the Lizard architecture woulc
allow to ‘plug-in’ other implementations). Here we assume that thasecollection have been
created outside Lizard (e.g. by a reconstruction program) or usingdhgzer component. The
first step is to find out which Tags are available. This is done by askimgudhieeManager
instance to list them:



ntmlistNuples ()

This is the Lizard output:

:-) ntmlistNuples () Explorables present: TagCol | ectionl TagCol |l ecti on2
TagCol | ecti on3 TagCol | ecti on4

It is now possible to analyze single ntuples or chains, as in the following script:

# Open an ntuple

nt1=ntm fi ndNt upl e ("TagCol | ectionl")

# Open a chain

nt2=ntm fi ndNt upl e ("TagCol | ecti onl| TagCol | ecti on2")

# Two zones
pl . zone(1, 2)

# Using ntuple shortcuts
# Plot the phi attribute wthout cuts
cplot1D(nt1, "phi","")

# Plot the sinus of phi with a cut
cplotiD(nt2,"sin(phi)","(phi < 100 )& (phi > -1)")

The output of the script is shownhigure 2.5

Figure 2.5. Plotting ntuple attributes



zoof
150
100}

50 f

=
on
-

1 ¥ Coordinate ;.  B.67035 Y Coordinate :  111.939

Thecpl ot 1D shortcut computes the min/max of the the expression to plot, then books a def
histogram, fills it and plots it). In order to see some more ntuple analysis features, let’'s avoi
shortcuts and use the underlying basic features instead.

Although thecpl ot 1D shortcut is useful to have a quick look at the data, most of the time ust
prefer to project the attributes on histogram with optimal binning and limits. Moreover it’'s ve
handy to be able to specify only a subset of the data sample, so to speed up the ‘cut tuning
Let's see an example how to do this:

HiHHBHHHAHAHE That ' s the ntupl e part #####HHARHHARHHAR
# Open an ntuple

nt 1=ntm fi ndNt upl e ("TagCol | ectionl")

# Book the histograms with nore bins

hl = hmcreatelD(" 10", "sin(phi) with cut", 100, -1, 1)

h2 = hmcreatelD("20","sin(phi) with cut", 100,-1,1)

# Project the sinus of phi with a cut to get rid of the fake peak on zero
ntl.cprojectlD(hl,"sin(phi)","(phi < 6.29 )& (phi > 0)")

# Project sane quantity with same cut but take only entries from 200 to 500
nt1.cprojectlD(h2,"sin(phi)","(phi < 6.29 )& (phi > 0)", 300, 200)

HERHHHHH TR HHHE The rest is plotting... #HE##HHHBRBHHHHHIH

# Set zone min/max to inprove readeability



pl . set M nMaxY(0, 160, 1)
pl.zoneOption ("option","stats")

# Pl ot histogram

pl .dataOption ("l egend","Al'l entries")

# This is equivalent to shortcut hplot(hl)
vi=vm fronlD( hl)

pl . plot(vl)

# Reset options

pl.dataOption ("","")

# Pl ot hi stogra

pl .dataStyle("fillstyle","solid")
pl.dataStyle("fillcolor' ,"red")

pl .dataStyl e("linecolor","red")

pl . dat aOpti on ("I egend", " Subset ")

pl .dataOption ("representation”,"hfilled")
v2=vm fromlD( h2)

p! . overlay(v2, 0)

# Reset options

pl.zoneOption ("","")
pl . reset M nMax()

pl .dataOption ("","")
pl .dataStyle("","")

The script it's a bit longer due to plotting settings which would not be really necessary and i
output is shown ifrigure 2.6

Figure 2.6. Projecting ntuple attributes



|0 10
150 Entries 917
B hdean 0.057631
RrAS 0.737369
= Ciyerflow Il
Underflow I
i F— all entries
|0 20
100 Entries 180
| hean 0113627
RrAS 0.723305
- Civerflow O
Underflow 0
i R Suhset
a0 H-
1]
-1 -0 i na 1
¥ Coordinate : 04339392 % Coordinate : 15551

Notice that you can have the statistics information for both histograms and that a legend he
defined for each of them.

Getting help

Lizard comes with an help system to provide advice on its capabilities. The main level help
accessed using thel p() shortcut which would produce the following output:

:-) hel p()

help is available for the foll ow ng classes :

Anal yzer
Annot ati on
Fi t Par anet er
Fitter

Hi st oManager
Hi st ogramlD
Hi st ogr ankD
Nt upl e

Nt upl eManager
Pl otter

Poi nt



Scal ar
SharedLi b
Vect or
Vect or Manager
shortcuts

you can specify nore than one cl ass separated by blanks in the hel p comand
for exanple: hel p("Hi stogranlD H st oManager")

As explained by the output more detailed information is available on specific components, ¢

:-) help ("NtupleManager")

net hods avail abl e for Nt upl eManager

voi d [istNtuples( ostream®&Qs = cout );
I Nt upl e* findNtuple( const char* aNanme );

Thenews() commands summarizes the changes happened during the most recent releases
most useful for development releases, where the help files may not be up-to-date).

i-) news()

New features in Lizard 1.2.0.8 (based on Anaphe 3.5.8):

o Vectors can now be created fronmProfil e(profHi st, options)
if options are non-enpty, spread will be used as errors

o hplot() function can plot profiles, added argunent for option to fronProf
hpl ot ( prof Hi st) plots profileH sto using errors,
hpl ot (profHi st,"s") plots profileH sto using spread

o included new Ntupl eTag/ Al DA_ Nt upl e version (inproved cut handling)

Finally thePl ot t er component has a method to list the available options:

:-) pl.listOptions()
Options for Zones

Zone Option List -------------on-----

The foll owi ng options for Zone objects are avail able

via the setProperty nethod taking two strings as paraneter:

setProperty (string nane, string val ue).

("option"," xlinear xlog stats nostats ylinear ylog xaxisgrid yaxisgrid ")
("coordinates"," |locked free ")

("mrroraxis","yes no")

Options for Datasets(H stograns)



The followi ng options for DataSet objects are avail able
via the setProperty method taking two strings as paraneter:
set Property (string nane, string value).

("representation"," error line histo marker errormark smooth hfilled box color "
("l egend", "val ue")

("ntype"," none rect dianond triangle dtriangle utriangle Itriangle rtriangle xci
("nsi ze", "val ue")

Python provides a usefabmmand completion features (similar to those available on Unix shell
which lists all the methods associated to a Python object. To do so, type the name of an ob
followed by the dot and then tHeAB key, as in this example:

:-) pl.

pl. class__ pl. nodule pl.listOptions pl.refresh pl . set Rep |
pl.__del pl.__repr__ pl . overl ay pl.resetM nvax pl.textStyle |
pl.__doc__ pl . dat aOpti on pl . pl ot pl.setM nMaxX pl.this |
pl._ init__ pl . dat aStyl e pl . psPrint pl.set M nMaxY  pl.thi sown |

Methods starting with_ are Python internals, the others correspond to those mentioned in tt
screen..

Chapter 3. A crash course on Python

Table of Contents

Introduction
Scalar variables, functions, statements
Lists, control-flow statements and more
Python lists and more
Python control-flow statements

| ntroduction

It's obviously impossible to describe how to use Python in a few lines of text, so we’ll give ji
very basic (refer tdhe Python Tutorialor a comprehensive introduction to the language).

Python is an interpred language: whatever you type at the prompt is submitted to the interp
after typingReturn. The interpreter parses the statement and executes it on the fly.

Python supports "standard" data types (humbers and strings) but also high-level built in dat
such as flexible arrays and dictionaries. It comes with a large collection of standard module
as built-in modules that provide things like file I/O, system calls, sockets, and even interfact
GUI toolkits like Tk or Qt.

Python is extensible: if you know how to program in C/C++ it is easy to add a new built-in ft

or module to the interpreter, either to perform critical operations at maximum speed, or to li
Python programs to existing libraries (such as an event reconstruction library).

Scalar variables, functions, statements



Python supports numerical variables (integer and floating-point) and strings (not to mention
complex numbers...). The type of a variable is defined by the assignment of a value. Once
assigned, Python checks that apgration applied to the variable is legal. String arguments m
be enclosed in double quotes. As an examplertbie () function executes any shell command
specified as a string argument:

shell ("Is -1tr")

As an example let's see how to declare two variables, print them and apply some operatior

:-) nyNunber 1

:-) myString "l

:-) print nmyNunber, nyString # No difference in output
11

0

-) print sin(m/Number) # Math operation on a nunber is K
. 841470984808
:-) nyString2="Bla"+nyString # String concatenation on a string is K
:-) print nyString2
Bl al
-) # Now illegal operation: sinus of a string!
:-) print sin(nmyString)
Traceback (nobst recent call |ast):
File "stdin", line 1, in ?
TypeError: illegal argument type for built-in operation

:-) # Another illegal operation: concatenation of a nunber
:-) nyString2="Bl a" +nyNunber
Traceback (nost recent call |ast):
File "stdin", line 1, in ?
TypeError: cannot add type "int" to string

Notice how to use thieuilt-in statement pri nt and a mathematical function suchsas() .

I mportant

When calling Python functions you should always specify a pair of parentheses even if no ¢
is required (just as in C++):

# Correct
exit()

# Wong
exit

I mportant

Python does not like blanks before statements. Typing a blank in front of the statement pro
syntax error message.

Lists, control-flow statements and more

Python listsand more

Python implements several high-level data typses, suchsast upl e anddi cti onari e. Among
theml i st is by far the most important, so it's worth having a closer lodk. A is a list of



comma-separated values (items) between square brackets. List items need not all have the
type.

t-) # Alist of God-knows-what..

:-) a = ['spam, ’'eggs’, 100, 1234]

:-) # Alist of floating point nunbers

:-) xvals =0.,1.,2.,3.,4.,5.,6.,7.,8.,9.,10.]

:-) print xvals

[0.O, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0]

A list can easily be transformed in another list. The following script creates a list of values fi
to 10 (using the ange() ) and then creates a list containing the square of such values exploit
functional programming features of Python:

# A list |like the previous one
xvals = [x for x in range(0.,11.)]
# Alist with the square val ues
yvals = [x*x for x in xval s]

print xvals

print yvals

The output is:

:-) print xvals

[0, 1, 2, 3, 4, 5 6, 7, 8 9, 10]

:-) print yvals

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

Lizard allows to construct\ect or out of two Pyhton lists (one for the X values, the other for
Y values), so for instance to draw a logarithmic curve:

# A list of real values

xvals = [x*1. for x in range(1,101)]
# Their logarithm

yvals = [log(x) for x in xvals]

# Convert to Lizard vector

vli=vm fronPy(xval s, yval s)

# Plot it

pl . plot(vl)

The output is shown iRigure 3.6

Figure 3.6. Plotting Python listsin Lizard



1 ¥ Coordinate : 876936 % Coordinate :  5.022148

Python control-flow statements

Control-flow statement is the category of statements that alter the program flow. Python prov
several such statementsfas, whi | e,i f, break, conti nue. The widely usedor statementis
closer to its Unix shell equivalent rather than to it C/C++ counterpart. Its purpose is to iterat
the elements of a sequencest orstring for instance) as shown by this example:

# The usual list [1..10]

xvals = [x for x in range(1.,11.)]

# An enpty |ist

yvals =[]

# lterate over all values of list xvals

for x in xvals :
# Append to yvals the square root of the correspondi ng xval s
yval s. append(sqgrt (x))

# print the result
print yvals

If we need to iterate through a sequence of integer numbersrigg ) function can be really
handy. That's an example:

:-) for i in range(0.,50.,10):
print i

10
20



NNEROoOoD T T
o vioul :

Notice that all iteration statements mark the beginning of the block of statements to execute
(colon). The end of the block is defined by the first empty line.

Chapter 4. Working with histograms
Table of Contents

Introduction

Transient (in-memory) histograms
Creating and deleting histograms in memory
Histogram IDs

Persistent (on-disk) histograms
Selecting the database and creating directory structure(optional)
Storing histograms in database
Removing histograms from database
Retrieving histograms from database

Lizard Hi st ogr amobjects
Methods common to all Lizand st ogr amobjects
Methods common to Lizard 18 st ogr amobjects
Methods for Lizard 2D and 3B st ogr amobjects

| ntr oduction

Lizard histograms are kept in-memoryHAst oManager instance takes care of creating, destro
and bookkeping all histograms. Histogram persistency, i.e. storing/retrieving histograms fro
persistent store (file or database) is controlled HysaoFact or y instance inside the

Hi st oManager . The current implementation of Lizard provides an Objectivity/DB factory.

Transient (in-memory) histograms

Creating and deleting histogramsin memory

TheH st oManager instance provide methods to create all supported kind of histograms. Thi:
shows all the creation methods available:



# 1D histogramwith 50 bins fromO to 500
hl=hm creat el 10, "test 1",50,0., 500.)

# 2D histogramwi th 10X10 bins fromO to 500
h2=hm creat e2D( 11, "test 2d", 10,0., 500., 10, 0., 500.)

# 3D histogramw th 10X10X10 bins fromO0 to 500
h3=hm creat e3D( 12, "test 3d", 10,0., 500., 10, 0., 500., 10, 0., 500.)

# 1D profile histogramwith 100 bins fromO to 50
hd=hm createProfile (14,"test profile",100,0., 50.)

# 1D histogramwith 4 bins of different width
h5=hm creat elDvVar (15, "test 1d variable binning",[0.,1.,5.,13.,41.])

# 2D histogramwith 4X4 bins of different width
h6=hm cr eat e2DVar ( 16, "test 2d vari able binning",[0.,11.,12.,31.,40.],[10.,11.,12

It is possible to see the list of existing histograms by invokingitiieomManager method i st ().
To remove all histograms in one go, it's nhecessary to catleihe e( 0) :

:-) hmlist() # Hi stograns created using the previous script

1D hi st ogr amns:
| abel 10 title
| abel 15 title

"test T’
"test 1d variabl e binning’

2D hi st ogr ans:
label = 11 title

= "test 2d’
| abel = 16 title

"test 2d variabl e binning

3D hi st ogr ans:
label = 12 title

"test 3d’

profile histograns:

| abel = 14 title "test profile’

:-) hmdeleteH sto(0) # Delete all histograns
i-) hmlist()

no hi stograns stored

Histogram I Ds

Histograms in memory can be further referenced usingitbeire. the string or number which
comes as first argument in the create method. Unlike in HBOOK, Lizard histogram IDs are
and not numbers. If a number is specified it is converted to the corresponding string. By de
creating a new histogram with the same ID overrides the old one and produces a warning.

# Nunmeric ID
hl=hm creat el 10, "test 1",50,0., 500.)

-)
)
-) # String ID, will override

-) hl=hmcreatelD("10","test 1",50,0., 500.)
=

-)

-)

INFG 1D-histogramwith 1D 10 has been del et ed.
# Now del ete using the nunericla ID

:-) hmdel et eH st o(10)

INFG 1D-histogramwith 1D 10 has been del et ed.



It is possible to exclude the overriding by using one of this methods endh@vanager

hm di sabl eOverwite()
hm enabl eQverwrite ()
hm di sabl eWarnOverwrite()
hm enabl eWarnOverwrite ()

as in this example:

i-) hmlist()

no hi stograns stored

:-) hmdisabl eOverwite()

:-) hl=hmcreatelD(10,"test 1",50,0., 500.)
:-) hl=hmcreatelD("10","test 1",50,0., 500.)

ERROR. found 1D hi stogramwith ID 10 and overwiting is disabled.
ERROR when trying to register. No histo created.

To retrieve an histogram identified by ID there are methods available ehsth@vanager as
shown by this script:

# Cet back four handl es of histograms having different type

h1l = hmretrieveH stolD(10)
h12 = hmretrieveH sto2D(11)
h13 = hmretrieveH sto3D(12)
hl4 = hmretrieveProf (14)

Persistent (on-disk) histograms
I mportant

Since the current version of the prototype supports persistency with Objectivity/DB some of
information is very specific and would not apply to using another store.

Selecting the database and creating directory structur e{optional)

The first step is to select the (Objectivity/DB) database for the Histograms. By default, a DE
"test-0" will be used (the DB is created if it is not yet existing). To select another database f
histograms e.g.:

hm sel ect St ore("zer bi no")

whose resulting output is:

:-) hmselectStore("zerbino")

Nam ng root directory has been created.
Created /usr directory

Created /usr/dinof mdirectory

Lizard has allocated a new Objectivity/DB database and created the top of a directory struc
The structure starts withusr and then the username taken from the environment vagiatie,



so in this case the directory structure contairss / di nof m It is now possible to create and
remove directories as well as to navigate in the tree using themvanager methods:

:-) # What’'s current directory? The newy created /usr/dinofm
:-) _hm pwd()

/usr/di nofm

:-) # List the content of directory (nothing)

t-) hmls()

)
) # Create two subdirectories and list them
:-) hmnkdir("Data")
) hm nkdir("M")
:-) hmls()

Dat a Wed May 9 10:19: 37 2001
MC Wed May 9 10:19:42 2001
:-) # Now go in the Data subdirectories

:-) hmcd("Data")

:-) # Create two nore directories

:-) hm nkdir ("2000")

:-) hm nkdir("2001")

:-) # Current directory

;=) hm pwd()

[ usr/ di nof nf Dat a

:-) # The new subdirectories of Data

t-) hmls()

2001 Wed May 9 10:20: 05 2001
2000 Wed May 9 10:20: 02 2001

Storing histogramsin database

Let’'s see how to store transient histograms in the/ di nof m Dat a/ 2001 directory.

# Create 1D histogramwith 50 bins fromO0O to 500
hl=hm creat el 10, "test 1",50,0., 500.)

# Create 2D histogramw th 10X10 bins fromO to 500
h2=hm creat e2( 11, "test 2d",10,0., 500., 10, 0., 500.)

# Change directory (absol ute path)
hm cd("/ usr/di nof m Dat a/ 2001")

# Check we're really there...

hm pwd()

# List histograms (none)

hm | s()

# Store histograms by ID
hm st ore(10)
hm store("11")

# List them
hm | s()

Such a script would produce this output on screen:

:-) # Create 1D histogramwi th 50 bins fromO to 500
hl=hm creat elD( 10, "test 1",50,0., 500.)

:-)
:-) # Create 2D histogramw th 10X10 bins fromO0 to 500
h2=hm creat e2D( 11, "test 2d", 10,0., 500., 10, 0., 500.)



-)

-) # Change directory (absol ute path)
hm cd("/ usr/ di nof ml Dat a/ 2001")

-) # Check we're really there...

... hm pwd()

/usr/ di nof m Dat a/ 2001

:-) # List histograns (none)
hm | s()

)
) # Store histograms by ID
... hmstore(10)
:-) hmstore("11")
)
)

# List them

... hmls()

10 1D test 1 Wed May 9 10:35:20 2001
11 2D test 2d Wed May 9 10:35:20 2001

Removing histograms from database

There are now two histograms in the directory. To remove them by ID:

# Change directory (absol ute path)
hm cd("/ usr/di nof m Dat a/ 2001")

# Renopve from dat abase

hm scratchHi sto (10)

hm scratchH sto (11)

Notice how numerical and string IDs can be freely mixed.

Retrieving histograms from database

Histograms in a persistent store can be retrieved by ID:

# Change directory (absol ute path)
hm cd("/ usr/ di nof m Dat a/ 2001")

# Retrieve histograns

hl = hm | oadlD (10)

h2 = hm | oadlD (11)

print hl.title()

print h2.title()

Retrieving histograms with non-existing IDs or mixing histogram types would produce error
messages like these:

-) hmls()
10 1D test 1 Wed May 9 10:35:20 2001
11 2D test 2d Wed May 9 10:35:20 2001
-) hl = hmoadlD (16)

Hi st oFactory: : 1 oadlD> requested histo with |abel= 16 not found
:-) hl = hmload2D (10)

Hi st oFactory:: | oad2D> cannot | oad 2D fromhisto with dim=1

Lizard Hi st ogr amobjects

LizardH st ogr amobjects have different types (1D,2D, Profile etc.) but they share a commot



ancestor class. This section will first introduce the methods defined on all histograms, then
look into the methods that are specific for each type.

Methods common to all Lizard H st ogr amobjects

This is a quick list of the methods available on each histogram independently of its specific

# Methods common to all histograns

# Reset histogram
hl.reset()
h2. reset ()

# Nunber of di nmensions
h1. di mensi ons()
h2. di nensi ons()

# Title
hi. title()

# Entries

# Print the total nunber of entries

hl.allEntries ()

# It’s also possible to assign the total nunber of entries to a variable
# a = h2 allEntries ()

# Print the nunmber of in-range entries

hl.entries ()

# Print the nunber of out-range entries (underflow overfl ow)

hl. extraEntries()

# Print the nunber of equivalent entries (SUMweight] ~ 2/ SUM wei ght”2])
h1. equi val ent Bi nEntri es()

# Total bin content

# Sum of in-range bin contents in the whol e histogram

h1. sunBi nHei ght s()

# Sum of extra bin contents in the whole histogram

hl. sunExt raBi nHei ght s()

# Sum of all (both in-range and extra) bin contents in the whol e histogram
h1. sunAl | Bi nHei ght s()

To show an example, we create a histogram &gure 4.1

Figure4.1l. A Gaussian



—| Qplotter | o]
- o 10
100 Entries 50
- hdean £a
- RrAS 4 99996
- Cverflow 1
a0 Lnderflow 0
G0 -
40 |-
20
0 i L1 L1 1
1] 10 20 a0 40 al
¥ Coordinate : 456218 Y Coordinate : 98.8113

The next screen shows the output produced by such common methods on that histogram:

-) # 1D histogramwith 50 bins fromO0O to 50
. hl=hm creat elD( 10, "test 1",50,0., 50.)
:-) # Fill the 1D hi st ogram
.. for i in range(0.,51.):
hil.fill (i, 100.*exp(-(i-25.)**2/50.))

:-) # Methods conmon to all histograns
:-) # Nunber of dinensions
... hl.dinmensions()
1
:-) # Title
hl.title()

test 1’

) # Entries
# Print the total nunber of entries
... hl.allEntries ()
51
:-) # Print the nunber of in-range entries
hl.entries ()

:-) # Print the nunber of out-range entries (underfl ow overfl ow)

... hl.extraEntries()

1

:-) # Print the nunber of equivalent entries (SUMweight] ~ 2/ SUM wei ght”2])
h1. equi val ent Bi nEntri es()

17 724516454605929

-)



:-) # Total bin content
# Sum of in-range bin contents in the whole histogram
... hl. sunBi nHei ght s()
1253. 3133575714553
:-) # Sum of extra bin contents in the whol e histogram
... hl.sunExtraBi nHei ghts()
0. 00037266531720786707
:-) # Sumof all (both in-range and extra) bin contents in the whol e histogram
... hl.sumAl | Bi nHei ghts()
1253. 3137302367725

Methods common to Lizard 1D Hi st ogr amobjects

Lizard 1DHi st ogr am such 1D histograms with fixed and variable binning and profile histogr
share a large set of common methods. This section presents these methods and highlights
differences related to profile histograms.

# Methods common to all 1D histograns

# Access to bin information

# Bin content (of bin 20)

h1. bi nHei ght (20)

# Bin error (of bin 20)

hl. binError (20)

# It is possible to map an x value to the bin. Error of bin at x = 20. 44
h1l. bi nError (hl. coordTol ndex (20.44))

# Retrieve the | owest/highest bin (useful for iteration)
h1. m nBi n()

h1. maxBi n()

# Maxi mum bi n cont ent

h1. maxBi nHei ght ()

# M ni mum bi n cont ent

h1l. m nBi nHei ght ()

# Statistics
# Mean
h1. mean()

hl.rns()

# Methods specific to non-profile 1D histograns (1D and 1DVar)
# Fill with weight=1.

hi.fill(1.)

# Fill wth weight=4.

hi.fill(1.,4.)

# Methods specific to profile 1D histogramns
# Fill with weight=1.

ha. fill(1.)

# Fill with weight=4.

h4. fill(1l.,4.)

# Cet the "spread" of a bin

h4. bi nSpr ead (20)

As a real example let's see how to put in a Python list the bins’ content of a histogram:

# 1D histogramwith 50 bins fromO0 to 50
hl=hm creat elD( 10, "test 1",50,0., 50.)
# Fill the 1D histogram



for i in range(0.,51.):
h1.f| I (i,100.*exp(-(i-25.)**2/50.))

# Enpty |i st

cont =[]

# lterate over bins

for i in range (hl.m nBin(), hl. maxBin())
# Put in the list the content of each bin
cont . append( hl. bi nHei ght (i))

# Print the Iist
print cont

Methodsfor Lizard 2D and 3D Hi st ogr amobjects

Lizard 2D and 3D+ st ogr amobjects have their own set of specific methods, which are usual
straightforward extensions of their 1D equivalent. This section will just list some of these m
and leave the user the thrill to find the other ones.

# 2D histo access bin content/error
h2. bi nHei ght (5, 5)
h2. bi nError (5,5)

# Fill with and wi thout weight
h2.fill (1.,1.,8.)
h2.fill (1., .)

# Projections
hx = h2.projectionX ()
hy = h2.projectionY ()

# Slices

# Only the bin containing coordi nate X=5.
hsl = h2.sliceX (5.)

# Al bins containing in the range X = 3..6
hs2 = h2.sliceX (3.,6.)

# 3D histo access bin content/error
h3. bi nHei ght (5,5, 5)
h3. bi nError (5,5,5)

# Fill with and MAthOUt wei ght
h3. fill (1.,1.,1.,7.)
h3.fill (1.,1., )

# Projections
hx h3. proj ecti onXY ()
hy h3. proj ecti onYX ()

Chapter 5. Working with Vectors
Table of Contents

Introduction
Role of vectors in Lizard
Using thevect or Manager
Creatingvect or from histograms



Retrieving avect or from manager
Removing avect or from manager
Copying avect or
Creating a/ect or from Python lists
Writing/reading back &ect or from ASCII file
Operations on vectors
Translating and scaling\&ct or
Arithmetic operations with othefect or
Arithmetic operations with scalars
ThePpoi nt inside vectors
Retrieving single points out of a vector
Modifying points in a vector
The vector'sannot at i on
Retrieving vector's\nnot at i on as a Lizard object
Modifying vector’sAnnot at i on

| ntroduction

Lizard vector’s are not just simple container of real values (like e.g. KUIP vectors) but objec
designed to store information (value with error) at "Points" in space. Each of these points c

® avalue, which is an instance of ‘Point’ having:

O avalue
O apositiveerror on the value
O anegative error on the value
® coordinates, which are in turn ‘Points’ of the same type, having:

O avalue of each of the coordinates
O a positive'error’ on each of the coordinates
O a negativéerror’ on each of the coordinates

This information allows, for instance, to map an histogram bin completely: the height of the
corresponds to the value, the error on the bin corresponds to the value errors, the center of
corresponds to the X coordinate and the distances between the center and the lower/upper
the bin corresponds to the ’errors’ on the coordinate. This kind of vector is therefore easily |
to any histogram and can be used e.g. for fitting or plotting. As briefly explained in the first |
Vectors are created and managed bya or Manager .

Role of vectorsin Lizard

Lizard vectors have a central role in connection withrthet er andFi tt er components. The
Fi tter accepts a vector as the set of points to fit the model te| theer accepts most data (th
exception being Scattter plots) as vectors. For instance the Lizard command to plot are:

# Pl ot one vector

pl . pl ot (vl)

# Overlay a vector

pl . overlay(vl, 1)

# Overlay two vectors in one go
pl . plot(vl, v2)



Shortcuts such asl ot (h1) to plot a histogram, silently convert the histogram to a vector.

Using the vect or Manager

Creating Vect or from histograms

TheVect or Manager allows the user to create new vectors which will then be managed on hi
behalf. One way to create vectors is to exploit the methods to create a vector out of an exis
histogram:

# 1D histogramwith 50 bins fromO0 to 500
hi=hm creat el 10, "test 1",50,0., 500.)

# 2D histogramwi th 10X10 bins fromO0 to 500
h2=hm creat e2D( 11, "test 2d",10,0., 500., 10, 0., 500.)

-) vli=vm fronilD(hl)
-) v2=vm fron2D( h2)

-) vmlist()

)
)
)
)
)
)
)

1 1D vectors:
1 size 50

1 2D vectors:
1 size 100

Once the vectors are created, they are identified by a sequence number starting from 1. Th
of the the i st () method will be ordered by those sequence number.

Retrieving a Vect or from manager

To retrieve a vector from théct or Manager one should use eitheetri evelDoOrretri eve2D
methods, which produce a reference to an existagor :

t-) vmlist()

1 1D vectors:
1 size 50

1 2D vectors:
1 size 100
# There are two vector. Get another reference to one of them
:-) v3=vmretrievelD (1)
c-) vmlist()

1 1D vectors:
1 size 50

1 2D vectors:
1 size 100
# Still two vectors in the manager

Removing a Vect or from manager

To remove avect or from the manager, just delete it:



:-) # No effect, was just a reference
:-) del v3
t-) vmlist()

1 1D vectors:
1 size 50

1 2D vectors:
1 size 100

:-) # This will renmove the 1D vector
:-) del v1
i-) vmlist()

1 2D vectors:
1 size 100

:-) # This will renmove the 2D vector
:-) del v2
c-) vmlist()

no vectors stored
Copying a Vect or

To make a copy ofect or use theleepd one() method as in this example:

:-) # Make a real copy of vector
:-) v2 = vl.deepd one()

Creating a Vect or from Python lists

In thethe section called "Lists, control-flow statements and nwee5aw briefly how to make a
Lizard Vect or out of two Pyhton lists. It's now time to see in detail that functionality. In this c
the script will fill in not only coordinates on X and value on Y, but also the respective errors:

# Alist fromO to 10

xvals = [x*1. for x in range(0.,11.)]
# Alist with twice the val ues

yvals = [2*x for x in xval s]

# "Error’ on X i.e. half binwidth
exvals = [0.5 for x in xvals]

# Error on Y, i.e. sqrt(Y)

eyvals = [sqgrt(y) for y in yvals]

# Create Lizard vector fromPython lists
vli=vm fronPy(xval s, yval s, exval s, eyval s)

# Pl ot
pl .dataOption ("representation”,"error")
pl . plot(vl)

The output of the script is shownhigure 5.1

Figure5.1. Making a Lizard vector from Python lists



25

20 L

;++++$+++

|:|-|||||||||||||||||||||
n 2 4 i ] 10

1 X Coordinate :  5.515186 Y Coordinate : Z26.6706

Writing/reading back a Vvect or from ASCI| file

A Lizard vect or can be saved in an ASCII file and read back later on. This allows to export/
data from other formats and to produce dumps to send to collegues or to the Lizard suppor
case of bugs... Once we haveeat or handle there are twect or Manager methods to use:

# Save in ASCI| file
v1l.toAscii("vl.dat")

# Read back from ASCII file
vl.fromAscii ("vl.dat")

The file format is plain ASCII with bits of XML-like tags. In the future it will evolve in proper
XML format. As an example this is the ASCII file produced by saving the previously produc
Vect or:

This and the next three lines are needed to read in the vector. Change at own
Vector: version, dinension and size (nX, nY for 2D)

1111 11

<Al DAAnnot ati on size="0" >

</ Al DAAnnot at i on>

AWONRFRPOHHHHHH

X ex+ ex- val ev+ ev-

0.5 0.5 00O

0.5 0.5 2 1.41421 1.41421
0.5 0.5 4 2 2

0.5 0.5 6 2.44949 2.44949
0.5 0.5 8 2.82843 2.82843



10 3.16228 3.16228

12 3.4641 3. 4641

14 3.74166 3.74166

16 4 4

. 18 4.24264 4.24264

0 0.50.5 20 4.47214 4.47214

coooo
[N NN NG
coooo
[N NN NG

P Ooo~NO Ul

After a header part, there are basically only ‘blank-separated’ numbers in a well defined se:
(as explained by the last comment line).

Operations on vectors

A Vector can be modified by replacing the values of its points, by applying transformations
shifting or scaling and finally by performing operations with other vectors or scalars.

Trandlating and scaling a Vect or

These transformation applies to any instancevekaor object. The following code shows how
use them:

# scale (multiply by value) the value of each data point
v1. scal eV(0.5)

v1. scal eV(2)

# vl as it was..

# scale (multiply by value) the coordinate i ndex (0=x, 1=y, ...)
v1. scal eCoordinate (2,0)

v1l. scal eCoordi nate (0.5,0)

# shift (add value) the value of each data point
v1.shiftV(5)

# shift (add value) the coordinate index (0=x, 1=y, ...)
v1l.shiftCoordinate (0, 3)

Notice that scaling/shifting transformations can be applied to both values and coordinates.
latter case the index of the coordinate must bespecified, since the transformation apply to v
any dimensionality.

Arithmetic operationswith other Vect or

It is possible tadd, subtract, multiply and divide aVect or object by anothevect or . Only values
are affected, while coordinates remain unchanged. In order to avoid creating new objects, t
operations modify the current object, so their behavior is like the C/C++ operatots*= / =.

# Create an enpty vector

vl=vm create()

# Read the content fromfile

vl. fromAscii("vl.dat")

reading in 1D-vector of size 11 (11, )
# Make a copy

v2=v1. deepd one()

# Now conbi ne vl and v2

# The content of vl is now O
vl. subVector (v2)



pl . pl ot (vl)

# The content of vl is now equal to v2
v1l. addVector (v2)

pl . plot(vl)

# The content of vl is 1

vl.divVector (v2)

p! . plot(vl)

# And back to the original values..

v1. nul Vector (v2)

pl . plot(vl)

Errors are propagated according to the rules used by HBOOK histograms, so users can eff
apply these methods to implement histogram operations.

Arithmetic operationswith scalars

It is possible tadd, subtract, multiply and divide aVect or object by a scalar (real) value. Only
values are affected, while coordinates remain unchanged. In order to avoid creating new ol
this operations modify the current object, so their behavior is like the C/C++ opetatots* =
/=.

# Arithmetic operations with scal ars
v1. add(5)

v1. sub(5)

vl. div(5)

v1. mul (5)

# original values as usua

The Poi nt Inside vectors

Retrieving single points out of a vector

A Lizard Vect or is a container afoi nt objects. It is possible to access individual points conte
in a vector either by retrieving special points (e.g. the point corresponding to minimum/max
value) or by iterating over all points, as shown by this script:

HUHHH R Vect or  creat | on ####HHHHHH R AR TR
# Alist fromO to 10

xvals = [x*1. for x in range(0.,11.)]

# Alist with twice the val ues

yvals = [2*x for x in xval s]

# "Error’ on X i.e. half binwidth

exvals = [0.5 for x in xvals]

# Error on Y, i.e. sqrt(Y)

eyvals = [sqgrt(y) for y in yvals]

# Create Lizard vector fromPython lists
vli=vm fronPy(xval s, yval s, exval s, eyval s)
#itfHHHHH#EE End of Vect or creati on #####HAHAHBHBHIHIHIHY

# Retrieving points and accessing their content

# get the point containing the naxi num val ue

pMax = v1. maxVal ue ()

# print point dinension

print "Maxi mum poi nt, Di nension =", pMax. di nensi on()



# print value and errors
print "Value =", pMx.value(), " (-" , pMax.vMnnus() , "+" , pMax.vPlus() ,")"

# get the point containing the m ni mum val ue
pMn = v1.m nVal ue ()

print "Maxi mum poi nt, Di nension =", pM n. di nensi on()
# print value and errors
print "Value =", pMn.value(), " (-" , pMn.vMnnus() , "+" , pMn.vPlus() ,")"

# Now | oop on all points
nPoi nts = v1. nPoi nts()
print "Al'l points"
print "Value X Binw dth"
for i in range(0,nPoints):
curP = v1.point(i)
print curP.value(), curP.coordinate (0), (curP.coordPlus (0)+curP.coordM nus |

The output of this script is as follows:

Maxi mum poi nt, Dinmension =1

Value = 20.0 (- 4.472135955 + 4.472135955 )
Maxi mum point, Dinmension = 1

Value = 0.0 (- 0.0 + 0.0)

Al'l points

i nwi dt h

<

o

©cococoo=

PP O®
cooooX
RPRRRPRRPD
NI sl ol ol .
T 0000 O0OS

[eoloNoNoNe)
[eoloNoNoNe)

SeoArNO:
[eeolololoNe]

5
6
7
8
9
10.0 1.0

TheVvect or methods to retrieve special points or to iterate over all of them are extremely us
(imagine looking for peaks in a large vector to find out starting values for fitting). Once@
object is selected it is straightforward to retrieve its value and coordinates (and correspondi
uncertainties) by using methods suclvasue() .

M odifying pointsin a vector

It is possible to modify a Lizardect or by adding or removing single points or by changing
individual points. This is an example on how to remove one point:

HERHHHHAH A Vect Or  Creat | on #H###H#HHHHH B HHHHHH T
# Alist fromO to 10

xvals = [x*1. for x in range(0.,11.)]

# Alist with twice the values

yvals = [2*x for x in xvals]

# "Error’ on X i.e. half binw dth

exvals = [0.5 for x in xvals]

# Error on Y, i.e. sqgrt(Y)

eyvals = [sqrt(y) for y in yval s]

# Create Lizard vector fromPython lists
vl=vm fronPy(xval s, yval s, exval s, eyval s)
HfHHH R End of Vector creati on #####HHHHHHHHHHHHIHAH



# there are 11 points

print "No of points=",vl. nPoints()
# Renove the first point

v1. renovePoi nt (0);

# One point less ...

print "No of points=",vl. nPoints()

It is possible to use arithmetic operations to change the value or the coordinate(s) of a poin

pl = v1. point(0)
pl. coordi nate (0)

= e
- 1

pl. val ue()

. shift Coordi nate(O0, -1)
pl. add(3.0)
pl. coordi nate (0)

o~ o\/\/\I/ o~ O~——
©
[N

pl. val ue()

Thevector’s Annot at i on

Each Lizard vector contains annot at i on. An instance ofnnot ati on is a set okey , value pairs
that can be used to store properties and corresponding values. As an example both histogr
statistics and fit results are kept as annotations attached to the corresponding vector. It’s e:
this if we create an new histogram, convert it into a vector and dump it in an ASCII file

# Create histo

hi st o=hm creat elD( 10, "test 1",10,0., 500.)

# Rl it

for i in range(0.,500.):
histo.fill(i,100.*exp(-(i-250.)**2/500.))

# Transformhisto in a vector and save it in ASCI| fornat
vli=vm fromlD (histo)

vl.toAscii ("vl1.dat")

# Show t he content of the ASCII format

shell ("cat vl.dat")

The resulting output is something like that:

# This and the next three lines are needed to read in the vector

# Vector: version, dinension and size (nX, nY for 2D)
#1110 10
# <Al DAAnnot ati on size="7" >

Change at own

# <Annotati onAttribute key="1D" val ="10" vis="true" />

# <AnnotationAttribute key="title" val="test 1" vis="false" />

# <Annot ati onAttri bute key="Entries" val ="500" vis="true" />

# <Annot ati onAttri bute key="Mean" val ="250" vis="true" />

# <Annotati onAttribute key="RMB" val ="12.7234" vis="true" />

# <AnnotationAttribute key="Overflow' val ="0" vis="true" />

# <Annot ati onAttri bute key="Underfl ow' val ="0" vis="true" />

# </ Al DAAnnot ati on>

# X ex+ ex- val ev+ ev-

48.202 1.79799 48.202 1.45888e-33 9. 04371e-34 9.04371e- 34
97.8238 2.17623 47.8238 3.43057e-18 1.86941e-18 1.86941e-18

147. 089 2.91084 47.0892 4.07065e-07 1.84461e-07 1.84461e-07



195. 214 4. 78585 45. 2141 2.77643 0.934482 0.934482

237.122 12.8777 37.1223 1928. 89 367.592 367.592

262. 23 37.7696 12.2304 2028. 21 380.951 380.951

303. 851 46. 1488 3. 85122 3.45022 1.15207 1.15207

351. 932 48. 0676 1.93239 6.1318e-07 2. 76603e-07 2. 76603e- 07
401. 186 48.8137 1.18634 6.29309e- 18 3.41888e-18 3.41888e-18
450. 804 49.1963 0. 803698 3.26373e-33 2.01876e-33 2.01876e- 33

It's easy to see that this vector contains an annotation with seven attributes. The first attribt
key| D, a corresponding valu® (the histogram ID) and a visibility flag equalue. The second
attribute has a keyi t | e, a corresponding valuest 1 (the histogram title) and a visibility flag
equalf al se. The first attribute will appear in the summary information on the screen (since i
visibility is true), the second will not be shown, since its visibility is false.

While the purpose afisible attributes is obvious (the key and the value will appear as an ent
the summary information), invisible attributes can store special information that is used by ¢
Lizard components, user programs or just kept for human eyes.

Retrieving vector’s Annot ati on asa Lizard object

It is possible to retrieve the annotation attached to a vector usiagrifteat i on() method of the
vector:

HHHHBHHHBRHHHAS Vect or Creat | on ###HHBHHHBHHHRHHHRHHY

hi st o=hm creat elD( 10, "test 1",10,0., 500.)

# R it

for i in range(0.,500.):
histo.fill(i,100.*exp(-(i-250.)**2/500.))

vli=vm fromlD (histo)
HifHH RS End of Vect or creati on #####HAHAHAHIHIHIHIHY

# Retrieve annotation
al = vl.annotation()
# Print its size
print al.size()

M odifying vector’s Annot at i on

Once got a handle on the annotation it is possible to modify it by hiding unuseful informatio
adding new attributes:

HERHHHHHHARRHY Vect Or  creat | on ####HHHHHH AR HHHHHH T

hi st o=hm creat elD( 10, "test 1",10,0., 500.)

# Fill it

for i in range(0.,500.):
histo.fill(i,100.*exp(-(i-250.)**2/500.))

vli=vm fromlD (hi sto)

# Create two zones and set linits to | eave space for sunmary i nformation
pl . zone(2,1)

pl . set M nMaxY( 0, 3000, 1)

pl . set M nMaxY( 0, 3000, 2)

# Plot the original vector on the first zone



pl . pl ot (vl)
HERHHHH TR HERHHHHH PR

# Retrieve annotation

al = vl.annotation()

# Hi de Overfl ow Underfl ow by overriding the visibility (the 0 at the end)
al.add ("Overflow',"0", 0)

al.add ("Underflow',"0", 0)

# Add two "invisible" attribute which are understood by Lizard plotter as axis t
al.add (" XAxisTitle","Very raw gaussi an", 0)
al.add ("YAxisTitle","Counts", 0)

# Add a "visible" user attribute (today’s date) by giving 1 as | ast paraneter
al.add ("Date",strftinme("%d/ % %" ,localtinme(tinme())), 1)

# Add an "invisible" user attribute (the 0 at the end)
al.add ("Remark","Should inprove the binnning",0)

# Plot the vector with nodified annotation on the second zone
pl . pl ot (vl)

# Print the "invisible" remark
print

print "For your eyes only:"
print al.find("Remark")

print

In this example the original annotation is modified in several ways:

® The originaloverfl ow , Underfl ow pairs are hidden by switching off the visibility flag (|
argument to the method)

® Two "invisible" attributes coding the axis titles are added to the annotation *the Lizard
takes care of decoding the information). Notice that their visibility is turned off (0 as la:
argument to the method).

® One "visible" attribute containing today’s formatted date is added (visible since 1 is pa
last argument to the method).

® Finally an "invisible" attribute is appended. It won’t appear anywhere on the plot but it
printed if the user knows the name of the key...

The output of the script is shownhkigure 5.2

Figure5.2. Editing annotation



3000 3000
- D 10 - o 10
B Entries a00 - Entries a0o0
B hdean Zal I~ hdean Zal
B RS 127234 B RrAS 127234

LI o Overflow p| 2900 Date  18/05/2001
B Underflow 0 B

2000 — ] 2000 — ]

1500 — 1500 —
- % -
L = L

(]

L S L

1000 — 1000 —

a00 — a00 —

D_||||I||||||||||||I|||| D_|||||||||||||||||I||||
0 100 200 300 400 500 1] 100 200 300 400 500
Yery raw gaussian
¥ Coordinate :  8.71303 Y Coordinate :  2969.79

Chapter 6. Working with Ntuples
Table of Contents

Introduction

TheNt upl eManager component
The default\t upl eManager
Finding ntuples
Defining chains

Operations on ntuples

Scanning ntuples

Probing ntuples

Plotting ntuple attributes or attributes’ functions
Ntuple plot shortcuts
Projecting over @ynani cHi st ogr am
Projecting over a knowk st ogr am
Projecting over a 2Bi st ogr am

Scatter plots

More on C++ expressions used by ntuple methods



Caching expressions
Using parameters to avoid compiling code

| ntroduction

Lizard ntuples are currently based on HepODBMS Explorable Collections stored in a
Objectivity/DB database. In the rest of this section it is assumed that such collections have
already created outside Lizard (although they can be created from inside uging ther ).
Future versions of Lizard will very likely implement the same functionalities on top of other
persistency systems.

The Nt upl eManager component

As explained irthe section called " Components in Lizatde user interacts with Lizard manag
to obtain other objects to work with. Ntuple analysis is no exception, since the "standard" w
doing it is:

® Ask theNt upl eManager component to return a handle to an ntuple (or a chain of ntuple
® Invoke methods on the upl e object to carry out analysis tasks (e.g. scanning, projectir
etc.).

Thedefault Nt upl eManager

During startup, a default instanceNfipl eManager callednt mis created on behalf of the user.
Such instance allows the user to list the available ntuples, to retrieve one ntuple (or a chain
similar ntuples), to define parameters for cuts etc. The following script shows some

Nt upl eManager functionalities:

# List available ntuples

ntmlistNuples ()

# Open an ntuple

nt 1=nt m fi ndNt upl e ("TagCol | ectionl")

# Open a chain

nt 2=ntm fi ndNt upl e (" TagCol | ecti onl| TagCol | ecti on2")
# List ntuples in nenory

ntmreview ()

This is the resulting output:

:-) # List available ntuples
ntmlistNuples ()

Expl or abl es present:

TagCol | ecti onl
TagCol | ecti on2
TagCol | ecti on3
TagCol | ecti on4d

:-) # Open an ntuple
... ntl=ntmfindNtuple ("TagCollectionl")
:-) # Qpen a chain
nt2=ntm fi ndNt upl e ("TagCol | ectionl| TagCol | ecti on2")



:-) # List ntuples in nmenory
ntmreview ()

1. TagCol I ectionl
2. TagCol | ecti onl| TagCol | ecti on2

Finding ntuples

TheNt upl eManager will lookup ntuples in theélepExpl or abl e container of thesyst emdatabase
attached to the current Objectivity/DB Federated Database. This is place where theipl es

() method would retrieve the names to show to the user. It is possible to locate ntuples wh
description is stored in other databases or containers by prepending to the ntuple name res
the database and container names, separated by colons, e.g.:

# Open an ntuple using only the nane (and default database: contai ner)
nt 1=ntm fi ndNt upl e ("TagCol | ectionl")

# Equi val ent call specifying explicitly database: contai ner

nt 2=ntm fi ndNt upl e (" Syst em HepExpl or abl e: TagCol | ecti onl")

Defining chains

A ‘chain’ of ntuples is an ordered set of ntuples sharing the same structure but containing d
data. The Lizardt upl emanager allows to define a chain of ntuples as a sequence of names
separated by thecharacter as in this example:

# Open an chain using only nanes (and default database: contai ner)

nt 1=nt m fi ndNt upl e ("TagCol | ectionl| TagCol | ecti on2")

# Equi val ent call specifying explicitly database: contai ner

nt 2=ntm fi ndNt upl e (" Syst em HepExpl or abl e: TagCol | ecti onl| Syst em HepExpl or abl e: Ta

Operationson ntuples

Once got a handle to an ntuple, it is possible to scan, probe or project attributes (or functior
attributes) while applying cuts and possibly restricting the set of "rows" taken into account.
allows to specify both the quantitiy to "sample" (i.e. what ends up in the histogram) and the
C++ expressions that are compiled on the fly and dynamically loaded.abihe 6.0summarizes
the most important ntuple commands:

Table 6.0. Ntuple methods



M ethod Arguments Comment

string aAttrs,string aCut, aFirst = 0, [Scan attributes for rows satisfying the cut
cscan aRows = LONG_MAX, std::ostreamé&lt’s possible to restrict the range of rows g
aOs = std::cout to specify an alternative output stream

Evaluate the minimum/maximum of an

const string aFunc,string aCut,doubl

probelD xMin, double xMax, long aMatcNum ta;;tterl(tgﬂtte and the number of rows satisfyin(
IHistogram1D* aHist,string Project the attribute onto the histogram foy

cprojectlliaFunc,string aCut, aFirst = 0, aRows|rows satisfying the cut. It's possible to
LONG_MAX restrict the range of rows taken into accol
IHistogram?2D* aHist,string Project the attributes onto the 2D histogra

cproject2laFuncl,string aFunc2,string aCut, |for rows satisfying the cut. It's possible to
aFirst = 0, aRows = LONG_MAX restrict the range of rows taken into accoy

IScatter2D* aPlot, string aFuncl ,strifRyoduce a scatter plot of the attributes for|
scatter2D [aFunc2,string aCut, aFirst = 0, aRowsows satisfying the cut. It's possible to
LONG_MAX restrict the range of rows taken into accol

Whenever the nameunc is mentioned, it means any mathematical function combining one
more ntuple attributes, suchsis( phi *0. 99) Orsqrt ( pt *pt - Ener gy) .

Scanning ntuples

Scanning an ntuple is the process of printing on a stream (by default the terminal window) 1
value(s) of one or more ntuple attributes. It is possible to specify the attribute(s) either by gi
their names separated by blanks or by specifying the position of an attribute in the ntuple, €

# Open an ntuple

nt 1=nt m fi ndNt upl e (" TagCol | ecti onl")

# List ntuple attributes

ntl.listAttributes ()

# Print the values of the first two attributes starting fromrow O to row 4
ntl.cscan("eventNo pt","",0,5)

# The sane thing specifying the position of the last attribute (2)
ntl.cscan(2,"",0,5)

The output would be something like that:

:-) # Open an ntuple

... ntl=ntmfindNtuple ("TagCollectionl")

:-) # List ntuple attributes
ntl.listAttributes ()

event No signed | ong int

pt doubl e

phi doubl e

Ener gy doubl e

:-) # Print the values of the two first attributes starting fromrow O to row 4
ntl.cscan("eventNo pt","",0,5)

event No pt

0 7.36183



9. 97665
7.80474
3. 06194
13. 1003

A WNPE

:-) # The sane thing specifying the position of the last attribute
ntl.cscan(2,"",0,5)

event No pt

7.36183
9. 97665
7.80474
3.06194
13. 1003

AWNEFLO

Notice that the row count starts framit is possible to restrict the data sample by specifying a
as the second argumentckan() . A cut is a string containing any C++ expression that evalu
to a boolean. The string is compiled and the cut condition applied to every row: if the condit
false, the row is discarded, as shown by this example:

# Open an ntuple

nt1=ntm fi ndNt upl e ("TagCol | ectionl")

# Now a sinple cut

nt 1. cscan("phi", "phi >4",0, 5)

# A cut using the ceil () math function (round upwards to nearest integer)
ntl.cscan("phi", "ceil (phi)>4",0,5)

# A cut using the floor() math function (round downwards to nearest integer)
nt1l.cscan("phi","floor(phi)>4",0,5)

The corresponding output is:

:-) # Open an ntuple

... ntl=ntmfindNtuple ("TagCollectionl")

:-) # Now a sinple cut
nt1.cscan("phi ", "phi>4",0,5)

phi

4. 55469
4.42411

:-) # A cut using the ceil () math function (round upwards to nearest integer)
nt1.cscan("phi", "ceil (phi)>4",0,5)

phi

4. 55469
4.42411

:-) # A cut using the floor() math function (round downwards to nearest integer)
nt1l.cscan("phi","floor(phi)>4",0,5)

phi

The last cut did not select any row (no values of phi greater than 5 were in the first 5 rows).
possible to redirect the output of tkecan() method by specifying as last parameter a Python
stream, as in this example:



# Open an ntuple

nt1=ntm fi ndNt upl e ("TagCol | ectionl")

# Create a Python output stream associated to a file
os=of stream("scanout . dat")

# Re-direct the cscan() output to the stream
ntl.cscan("phi pt","phi > 0",0, 10, os)

# Delete the stream

del os

# Show the file content

shel | ("cat scanout.dat")

Probing ntuples

Probing an ntuple is the process of computing the minimum and maximum value of a functi
one or more ntuple attributes. The typical use-case for probing is to compute histogram lim
order to book a histogram, as in this example:

# Open an ntuple

ntl=ntm fi ndNt upl e ("TagCol | ectionl")

# ProbelD returns three values which we assign to a Python list in one go!
limts =[]

# Probe the val ues of phi

[imts = ntl. probelD ("phi","")

print limts

# book hi stogram

hl = hmcreatelD(" 10", "phi",50,limts[O0],limts[1])

If the user executes the previous script, the output will look like this:

:-) # Open an ntuple
. ntl=ntm fi ndNt upl e ("TagCol | ectionl")
:-) # ProbelD returns three values which we assign to a Python list in one go!

c.limts =[]
:-) # Probe the values of phi
limts = ntl. probelD ("phi","")

t-) print limts

(0.0, 6.2782335752515044, 1000)

:-) # book histogram

... hl = hmcreatelD("10","phi",50,limts[O0],linmts[1])

Lizard tells that thehi attribute has a minimum value @fo and a maximum value of
6. 27823357525 (the number of rows sampled1ig00). Thepr obelD() method accepts a cut as
well, as shown in this modified version of the previous script:

# Open an ntuple

nt 1=nt m fi ndNt upl e (" TagCol | ectionl")

# ProbelD returns three values which we assign to a Python list in one go!
limts =[]

# This tine specify the cut phi>1.0

[imts = ntl.probelD ("phi", "phi>1.0")

print limts

# book histogramwith limts according to the cut

hl = hmcreatelD(" 10", "phi",50,imts[O0],limts[1])

Now the output will reflect the use of the cut:



:-) # Open an ntuple
... ntl=ntmfindNtuple ("TagCollectionl")
:-) # ProbelD returns three values which we assign to a Python list in one go!
oo limts =[]
:-) # This tine specify the cut phi>1.0
... limts = ntl. probelD ("phi", "phi>1.0")
t-) print limts
(1.0007097441033108, 6.2782335752515044, 762)
:-) # book histogramwith limts according to the cut
hl = hmcreatelD(" 10", "phi",50,imts[O0],limts[1])

Finally it is possible to define the number of rows to take into account when probing. The
probelD() would compute (by default) the limits on the first 1000 rows matching, starting fr
row 0. It is possible to reduce or enlarge the range by specifying two additional arguments
example:

# Open an ntuple

nt 1=ntm fi ndNt upl e ("TagCol | ectionl")

# ProbelD returns three values which we assign to a Python list in one go!
limts =[]

# Probe the values of phi on the first 100 rows only

[imts = ntl. probelD ("phi","", 0, 100)

# Probe the values of phi on up to 1000000 rows starting fromrow 50
[imts = ntl. probelD ("phi","", 50, 1000000)

Plotting ntuple attributes or attributes functions

Plotting ntuple attributes (or functions of such attributes) means actually three distinct oper:

® Booking (implicitly or explicitly) an histogram. In the implicit case the system first scan
data to compute histogram limits, then books a default histogram.

® Examine the ntuple data by checking on each row if the cut is satisfied. If so fill the
histogram.

® Plot the resulting histogram on screen or in a Postscript file.

In PAW it was possible to perform the three steps in one go usimgwhes/ PLOT command or t
break down the process using the commaind$Q CREATE/ 1D, NTUPLE/ PRQJECT and finally

HI STQ PLOT. The first command was used typically to get a rough estimate of the distributio
users would explicitly book the histogram and project the data on it, so to have more contrc
binning and to speed up the analysis (no need to scan data to get histogram limits). Lizard
similar approach, although the user is explicitly given a method to compute min/max of an
attributes’ function (sethe section called "Probing ntupl@sThis section will present all the
methods and strategies that could be used in Lizard to carry out the task.

Ntuple plot shortcuts

The easiest way to plot ntuple data is to usephet 1D() shortcut, which is a Python function
taking aa parameters an ntuple handle, a function to sample in the histogram and a cut as |
example:

# Open an ntuple
nt1=ntm fi ndNt upl e ("TagCol | ectionl")



# Plot the pt distribution with a pt>1 cut

hl=cplot1D(nt1, "pt", "pt>1")

# The shortcut returns an hi stogram handl e that can be used e.g. for fitting
# hfit(hl,"E")

Lizard would book a suitable histogram, fill it with ail values greater than one and finally plo
The output would be like iRigure 6.2

Figure 6.2. Plotting ntuple attribute using shortcut

= Qplotier EF
B 1N} 1000000
Entries G159
}H hean B.73526
REAS 364735
60— Cverflow 1
Underflow Il
40 —

20—
DII ||_|-|]-|-|m|r|n|r|nr|||||n||||
an 40 a0
1 X Coordinate : 49 8962 Y Coordinate : G073
I mportant

The shortcut returns the handle of a ‘default’ histogram which will be overridden on the nex
cpl ot 1) . Do not rely on the handle being valid after this happens, e.qg.:

# Plot the pt distribution with a pt>1 cut

hl = cplotlD(ntl,"pt", "pt>1")

# The shortcut returns an hi stogram handl e that can be used e.g. for fitting
# Now another call to cplotlD() returning the result in a different handle
h2 = cplotlD(ntl, "pt","pt>1")



# Fromnow on hl is invalid, because a new default histogram has overridden
# the previous one.

Projecting over a Dynani cHi st ogr am

Dynamic histograms are objects that looks like real histograms but actually keep a copy of
entries. This means users need only to specify the number of bins, not the minimum and m
of the range. Such an histogram can then be used to project ntuple values without knowing
limits on the data, as in this example:

# Open an ntuple

nt 1=nt m fi ndNt upl e ("TagCol | ectionl")

# Create dynanmic 1D histogram lith 100 bins

h10 = hm creat eDynani c1D(10, "Dynani ¢ 1D hi sto", 100)
# Project the pt distribution with a pt>1 cut
nt1l.cprojectlD (h10,"pt", "pt>1")

# Plot the histogram

hpl ot (h10)

The output would exactly as in the previous example, but now the user has more control or
histogram (e.g. can select the no. of bins). The only drawbaskefi cH st ogr amis the memor
footprint: since a dynamic histogram keeps the individual points filled in, it may grow very n
when large data samples are analyzed (i.e. more than 100000 entries).

Projecting over aknown Hi st ogram

This is the way to have full control and maximum efficiency in analysis. In order to do so we
to know in advance the histogram limits, then book a ‘normal’ (i.e. non-dynamic one) histog
and finally project it, as in this example:

# Open an ntuple

nt 1=nt m fi ndNt upl e ("TagCol | ectionl")

# Retrieve histogramlimts for this cut

limts =[]

# ProbelD returns three values which we assign to a Python list in one go!
l[imts = ntl. probelD ("pt*pt","pt>1")

# book histogramwith Iimts according to the cut

hPt = hm createlD("10","pt square",50,limts[0],limts[1])
# Project the pt distribution with a pt>1 cut
ntl.cprojectlD (hPt,"pt*pt", "pt>1")

# Plot the histogram

hpl ot (hPt)

This procedure is completely equivalent to the PAW ‘book, project and plot’ sequence.

Projecting over a 2D Hi st ogr am

For the time being there’s no equivalent shortcuptmt 10( ) , but this could be easily
implemented using the method outlined in e section called "Projecting over a known

Hi st ogram'. Lizard provides ar obe2D() to allow users to probe two attributes (or functions ¢
attributes) in one go, so it's straightforward to modify the previous script in this way:



# Open an ntuple

nt1=ntm fi ndNt upl e (" TagCol | ectionl")

# Find histogramlimts on phi and pt

lims =[]

[ims = ntl. probe2D("phi","pt", "phi>-1")

# Book histogram Notice the small quantity added to high limts to
# avoid m ssing the maxi mum val ues

h20=hm cr eat e2D( 20, "Phi vs. pt",40,lins[0],lins[1]+0.1,40,1ins[2],!ins[3]+0.1)
# Project the attributes with the fake cut "phi>-1"

nt 1. cproject2D (h20,"phi","pt", "phi>-1")

# Plot the histogramw th BOX option

hpl ot ( h20)

The output of the script is shownhigure 6.3

Figure 6.3. Projecting over a 2D histogram

- o " 20

a0 = Entries 1000
B Sum OverUnderow 1]

a0 —

30 — =

20 = . o am a g o ¢
_E uu nun |:|n “nﬂ o " oo o
I5] o oonga o ooooa o oo [ o
Oo o oo a e g O -l - o oo o o o
oo o s g oo o o o o a o oo oo o

‘||:| g o ge o oo oo pOoOQOopaa o o o e mpgOonp ooan
_|:||:|n= B s s Oa0esaan a s OO m O0Oo o a e O@ [=] CI - - |
Ooo O opOoOnQ L] OoQgeas a[QeO oo[OooOaoao
IHooeooao odeo ooopg ® o Ooocodo oo ooo
[1 s oooOoepgoeoOoOQgeoano copopodo oOeO0OO0OoOo@o

ooooOooOoopgoOOoogooOog oO0pgeO0OO0DDOOQOCeOD0OO0R
Fl[OBOoDoOpg=0o00 OpgpOoano ogO00ocO0OpopOopgoedO0o0ao
oOpo00go EIDEEI goco g0 sQooopgopd Dﬂd o
1] 2 4 ]
# Coordinate : 476331 Y Coordinate :  52.9323

Scatter plots

Scatter plots are diagrams in which each point in the 2D phase-space is visually represente
marker (usually a dot) in the corresponding X-Y position on the output device. There are tw
typical use cases for scatter plot:



® X-Y plot of a small data sample where it's very important to have accurate information
the position of each point

® ‘Cloud’ plot of a very large dataset. The exact position of the points is less important, ¢
the main information is the overall correlation among the variables.

Lizard defined two types of scatter plot objects:

® ‘dynamic’ scatter plot, where the original X-Y coordinates are kept as pairs of values
® ‘bitmap’ scatter plot, where the phase space is divided in a very thin grid (e.g. 1024X1
cells) and each cell is eithet orof f depending on having being ‘hit’ by an X-Y point.

The first type of scatter plot gives always the exact position of the points, but it consumes n
if the number of points is very high. The second type of scatterplot uses always the same a
memory, even for a billion points dataset , but has a "quantization" effect of the order of 1/1
points closer than 1/1000 of the range cannot be separated). This is not such a big problen
seem: most screen can’t anyway separate two such points and if this precison is required fi
belonging to very large datasets, it’s still possible to reduce the range of the scatter plot in t
desired region of the phase-space.

The main advantage of these data structures is that they allow manipulations fo the plot (i.e
zooming) without going back to the original data (something that was not available in PAW,

In the current version of Lizard scatter plots are created by default as 1024X1024 bitmaps
can be plotted as shown in the next script:

# Open an ntuple

nt 1=nt m fi ndNt upl e ("TagCol | ectionl")

# Create a factory for scatter plots

scat Fact = createl ScatterFactory()

# Create a scatter plot with x range [0,20] and Y range [0, 6. 28]
scat = scat Fact.create(0, 15.,0., 6. 28)

# Fill the scatte rplot

ntl.scatter2D (scat,"pt","phi","")

# Plot it

pl . pl ot (scat)

The resulting scatter plot is shownRigure 6.4

Figure 6.4. Scatter plot



; L) .5 . .1|:| . A

1 ¥ Coordinate ; 122426 Y Coordinate ; A.03336

Moreon C++ expressions used by ntuple methods

As explained briefly ithe section called " Operations on ntuplekiZzard does not interpretate t
cuts or the functions accepted by the ntuple methods and expressed using the C++ syntax.
code is compiled, loaded in memory and "glued" withnthepl e component. Lizard then loops
over the ntuple entries and execute the cuts and functions as part of its algorithm. This sec
give a few more details about this topic.

Caching expressions

Although the compilation of the code on the fly is pretty fast (thanks to the wide use of abst
interfaces), a few optimizations have been devised in order avoid as much as possible evel
small overhead. If the user specifies an ntuple methods accepting one or more C++ expres
code is compiled and the resulting shared library is cached for possible reuse, i.e. if the sar
function is reused, no compilation will take place anymore. The following script would show
behaviour when run the first time in Lizard:

# Open an ntuple
nt 1=ntm fi ndNt upl e ("TagCol | ectionl")
# Code is conpiled



print "Conpile & execute code"

start = time()

hl = cplotlD(ntl,"pt", "pt>1")

first = time()-start

# Code is not conpiled anynore: expressions are in cache
print "Do not conpile & execute code"

start = tinme()

# Conmpute ratio

hl = cplotlD(ntl,"pt","pt>1")

print "Executionis ", first/(tinme()-start), " tines faster"

The output shows clearly the advantage of not recompiling code.

Conpil e & execute code

Do not compile & execute code

INFO 1D histogramw th | D 1000000 has been del et ed.
Execution is 14.9392915407 tinmes faster

In the current implementation the cache stores the 100 most recently used expressions.

Using parameter sto avoid compiling code

Although caching is useful when the cuts or expressions are ‘stable’ (e.g. when running an
tuned analysis script over new datasets), it's no help when the user is still in the ‘explorator
phase, playing with cuts and struggling with corrections. As an example let's imagine the u
wants to try four different cuts gt just to see the quality of the resulting fit. The simplest
approach would be to project with 4 different cuts, as in the following script:

# Open an ntuple

nt 1=nt m fi ndNt upl e ("TagCol | ectionl")
# Create histogram

hl = hm createlD(" 10", "phi", 50, 0, 50)

# Project 4 tinmes

nt 1. cproject1D(hl, "pt", " pt<30.0")
hfit(hl,"E")

hil. reset ()

ntl.cprojectlD(hl, "pt","pt<35.")
hfit(hl,"E")
hil. reset ()

nt1.cprojectlD(hl, "pt", "pt<40.")
hfit(hi,"E")
hil. reset ()

nt1.cprojectlD(hl, "pt", "pt<45.")
hfit(hi,"E")

This would mean four code compilations, since the cut is syntactically different every time.
to avoid this, Lizard allows to define ntuple parameters that can be used in the cut and upd
execution time, thus avoiding to recompile just because a numeric value has changed:

# Open an ntuple

nt 1=ntm fi ndNt upl e ("TagCol | ectionl")
# Create histogram

hl = hm createlD(" 10", "phi", 50, 0, 50)



# Create ntuple paraneter set
pars = ntmcreateParanmeters ()

cuts = [30.0, 35.,40.,45.]

for i in range (0,4) :
# Set parameter ptMn
pars.set("ptMn",cuts[i])
# Use paranmeter ptMn
ntl.cprojectlD(hl, "pt","pt<ptMn")
hfit(hl, "E")
hl. reset ()

Chapter 7. Using theFitter component
Table of Contents

Introduction

Fitting histograms using a shortcut

Fitting with simple functions and sum of functions (general case)
More about fit parameters

Changing the fit range

| ntroduction

Lizard fit components are based either on the MINUIT or on the NAG C Numerical Libraries
backend minimizer engines. It is possible to switch from one to the other at startup time, by
specifying a parameter on the command line. Whichever engine is used, Lizard exposes ur
interfaces both for "simple” fitting (i.e. fitting with well known model functions, such as Gaus
Exponential or Polynomial) and for "complex" fitting with complex model functions.

Fitting histograms using a shortcut

Thehfit () shortcut can be used to fit a histogram using a few simple functior@uisgi an,
Exponent i al , Pol ynomi al (0),Pol ynomi al (1) . For all this functions it’s possible to figure out
reasonable starting values for the parameters, so that the user doesn’t have to provide add
information as long as the dataset is close enough to the model function. Higher degree po
and combination of functions are not allowed with the shortcut, since it’s difficult to figure ot
starting values for the parameters (see NEXT SECTION for more general simple fitting). Tt
of the shortcut has already been introduced in a previous example:

# Open an ntuple

nt1=ntm fi ndNt upl e (" TagCol | ectionl")
# Create histogram

hl = hmcreatelD(" 10", "phi", 50, 0, 50)
# Proj ect

nt1.cprojectlD(hl, "pt", " pt<30.0")

# Fit: this will work (pt is exponential)
hfit(hl, "E")

# Fit: these will not work!
hfit(hl,"G")

hfit(hi,"P0")

hfit(hi,"P1")



Fitting with ssmple functions and sum of functions (gener al
case)

If the hfit () shortcut is not suitable for the fitting task at hand, Lizard can fit any dataset co
in aVect or object. The conversion from histogram to vector can either be done behind the ¢
(as in the case of the shortcut) or explicitly by the user. If the data to fit are alreaghciia, no
further conversion is required.

The basic course of action for fitting can be summarized in the following list:

® Create an instance bBftt er component

® Give theFi tter the set of points to fit

® Specify the model function to fiGgussi an, Exponent i al ,Pol ynomi al (N) or a sum of
those)

® Set the starting values for the function parameters

® Start the fitting algorithm (so far only chi square fitting is exposed to the user, althougt
underlying package is capable of Maximum Likelihood fitting as well).

® Collect the result

® Delete theri tt er component

Tip

Be aware that even if the dataset is properly distributed according to the model function, m:
fitting algorithm would not converge if no suitable starting values for parameters are definec
this step is almost mandatory.

The most important methods of the t er component are listed ifable 7.1

Table7.1. Most important Fi tt er methods

M ethod Arguments Remark

Execute a chi square fit on the given set of points using the 1
function previously defined.

Retrieve a Lizardect or containing the values of the model

chiSquareFit() [None

fittedVector() [None function computed in the corresponding input points (usually|
overlay it to the set of input points).

printParametersfiNone Print the current values of the fit parameters

printResult() None Print the results of the fit

setData() Vector Define the set of input points as a Lizasclk or

setModel() string Define the model function (combination of {G,E,Pn})

setParameter() |string,doubl@¢Set the starting value of the parameter to a given quantity

The following script shows how to fit a histogram with a combination of Gaussian plus
Polynomial(0). Doing so it introduces most of the methods defined beforehand:

# Create an histogram



hi st o=hm creat elD( 10, "test 1",100,0., 500.)

# Fill it with a gaussian + pedesta

for i in range(0.,500.):
histo.fill(random gauss (250, 15))
histo.fill(i,1)

# The enpty line is necessary (to close the for |oop)!
# Declare a Fitter

fit=Fitter()

# Convert histogramto vector

vli=vm fromlD( hi st o)

# Define the dataset

fit.setData(vl)

# Set the nodel

fit.set Model ("G+p0")

# Define starting values for paraneters
fit.setParaneter("mean_0", 240)
fit.setParaneter("anp_0", 180)
fit.setParaneter("sigm_ 0", 20)
fit.setParaneter("a0_1", 30)

# Print starting val ues
#fit.printParanmeters ()

# Execute chi square fit

fit.chi SquareFit()

# print results

fit.printResult()

# Get back the fitted curve
_vfit=fit.fittedVector()

# Overlay points and fit

pl .dataOption ("representation","error")
pl.plot(vl, _vfit)

pl . reset ()

del fit

Notice the use of Python’s random number generaiiafom gauss() . The output is shown in
Figure 7.3

Figure 7.3. Fitting with two functions



—| Qplotter [ 4]
L IO 10
Entries 1000
B hdean 439,731
gl — RhAS 102.596
B Crverflow 1]
Underflow 0
i I w2/ NDF 1943524 / 96
B amp_0 G320 £ 3.69091
60— mearn_0 249 609 £ 0. F467EE
| sigma_0  -14.2739 £ 0645993
al_1 201767 £+ 0.242639
40 —
£ |
D | | | | | | | | | | | | | | | | | | | | | | |
1] 100 200 300 400 a00
¥ Coordinate : 474 265 % Coordinate : g2.9925

Parameters are named according to well known abbreviations depending on the model. Wt
functions are composed in a sum, the position of the term in the overall function (from O to |
appended with an underscore before it, as summariZeabie 7.2

Table 7.2. Name of fit parameters

Function Arguments Remark
G mean amp sigma Single Gaussian curve
E amp slope Single Exponential curve
Pn a0al..an-1 Single Polynomial curve of degree
G+G mean_0 amp_0 sigma_0 mean_1 amp -'fl‘wo Gaussian curves
sigma_1
mean_0 amp_0 sigma_0 amp_1 slope |Gaussian plus Exponential plus
G+E+PO i
a0 2 Polynomial(0)
PO+G+E a0_0 mean_1 amp_1 sigma_1 amp_2 [Polynomial(0) plus Gaussian plus

slope_2

Exponential

The easiest way to get the names of the parameters is to declare a new fitter and set the r




Lizard will print out the parameter names with the proper naming, e.g.:

fit=Fitter()
fit.set Model (" G+E+p0")
del fit

would produce this output:

c-) fit=Fitter()
-) fit.setMdel ("G+E+p0")

Ext endedFitter setup
*data not defined*
Paraneters defined in the node

| ndex Nane

anp_0
mean_0O
sigma_0
slope_1
amp_1
a0 2

arwWNEFLO

=) del fit
More about fit parameters

Fit parameters are objects, so they can be manipulated using their methods, sumnibaizied i1
7.3

Table 7.3. Methods on Fi t Par anet er Objects



Method Arguments Remark
value() None Return parameter value (meaningful only after fitting)
error() None Eﬁﬁ\ugr)n Hessian error on the parameter(meaningful only aftg
start() None Return starting value
step() None Return step (change between iterations)
isFixed() None Return whether the parameter is fixed
isBound() None Return whether the parameter is bound
lowerBound() [None Return parameter’s lower bound
upperBound() [None Return parameter’s upper bound
setStart() double Change starting point
setStep() double Change step
setBounds() double.doubl %Sigéoarameter boundaries. Equal boundaries make the parg
noUpperBound()None Return a value corresponding to +infinity
noLowerBound(]bNone Return a value corresponding to -infinity

The following scripts makes a fit, then retrieve one parameten€tng, prints its attributes and
then change them using thiet Par anet er methods:

#H##H## Prelimnary fit to get a reasonable value for paraneter #######

# Create an histogram

hi st o=hm creat elD( 10, "t est

# Fill it with a gaussian

for i in range(0.,500.):
histo.fill(random gauss (250, 15))

1",50,0., 500.)

# The enpty line is necessary (to close the for |oop)!
# Declare a Fitter

fit=Fitter()

# Convert histogramto vector
vli=vm fromlD( hi st o)
# Define the dataset

fit.setData(vl)

# Set the nodel

fit.setMdel ("G")

# Define starting
fit.setParaneter ("

fit.setParaneter("anp", 180)

fit.setParaneter("

# Execute chi square fit
fit.chiSquareFit()
#HH###H End of prelimnary fit #######

val ues for paraneters
nmean", 240)

si gma", 20)

# A Python function to exam ne a paraneter

def exam nePar

(fitPar)

print "Value=",nean.value() , " Error=",mean.error()
print "Start=",nean.start() , " Step=", nean.step()
if ( nean.isFixed()) :

print "Paraneter is f
if ( nean.isBound())

print "Paraneter

i xed"

bound between ", nean. | ower Bound()," and ", mean. upper Bound:



el se :
print "Paranmeter is free"

# Retrieve the mean paraneter
nean = fit.fitParaneter ("nean")

# Print out all information about the nmean paraneter
print "Exam ne nean paraneter”
exam nePar ( mean)

# Now change the paraneter

print ""

print "Change starting val ue,step and make it fixed"
nean. set Start (100.)

nmean. set St ep( 0. 5)

nmean. set Bounds(100., 100.)

# Print out all infornmation about the nmean paraneter
print "Exam ne nean paraneter"
exam nePar ( mean)

# Rel ease fixed paraneter

print ""

print "Release fixed paraneter”
nmean. r el ease()

exam nePar ( nean)

# Set open boundari es

nmean. set Bounds( nean. noLower Bound(), 110)
print ""

print "Bound between [-infinity, 110]"
exam nePar ( mean)

# Set open boundaries

nmean. set Bounds( 90, nean. noUpper Bound())
print ""

print "Bound between [90,infinity]"
exam nePar ( nean)

del fit

Ignoring the fit output, that is not relevant in this context, the result of the script would be
something like that:

Exami ne nean par anet er

Val ue= 248. 624079318 Error= 0.63102261826
Start= 240.0 Step= 1.0

Paraneter is free

Change starting value,step and make it fixed
Exam ne nmean par anet er

Val ue= 248. 624079318 Error= 0.63102261826
Start= 100.0 Step= 0.5

Paranmeter is fixed

Par anet er bound between 100.0 and 100.0

Rel ease fixed paraneter

Val ue= 248. 624079318 Error= 0.63102261826
Start= 100.0 Step= 0.5

Paraneter is free



Bound between [-infinity, 110]

Val ue= 248. 624079318 Error= 0.63102261826
Start= 100.0 Step= 0.5

Par anet er bound between 1e+20 and 110.0

Bound between [90,infinity]
Val ue= 248. 624079318 Error= 0.63102261826

Start= 100.0 Step= 0.5
Par amet er bound between 90.0 and 1e+20

Notice the use of a Python function to print out information about a generic parameter.

Changing thefit range

TherFi tter component allows to exclude individual points or sets of points (ranges) from th
dataset. The methods available for this purpose are listed section called "Changing the fit
range’

Table 7.4. Fi t methodsto adjust the input dataset

M ethod Remark
ie’ritcla;gfpio'; nt(i); Exclude the given point from fitting
excl udeRange( | ow, high);
integer |ow; Exclude points in the range from fitting
i nt eger high;
: ﬂfgggfpio'; nei)s Include the given point for fitting
i ncl udeRange(Il ow, high);
integer |ow, Include points in the range for fitting
i nteger high;

The following scripts show how to do this. First a Gaussian distribution is sampled in a histc
then a spike is injected to decrease its quality:

# Create an histogram
hi st o=hm creat elD( 10, "test 1",100,0., 500.)
# Fill it with a gaussian
for i in range(0.,500.):
histo.fill(random gauss (250, 15))

# Insert a spike at coordi nate X=230
for i in range(0.,50.):
histo.fill (230)

# Plot it
hpl ot ( hi st o)

We now need to locate the spike in order to remove it: in this case we know it's in coordina
X=230, so we can simply use the histogram methods that maps a coordinate to the corresg
bin:

:-) histo.coordTol ndex(230)
46



(in a real case it would suffice to move the cursor to the spike and read the coordinate on tl
Pl ot t er window). This script will first fit the histogram with the spike, the redo the fit after
removing the pointé.

pl . zone(1, 2)

# Declare a Fitter

fit=Fitter()

# Convert histogramto vector

vli=vm fronilD( hi st 0)

# Define the dataset

fit.setData(vl)

# Set the nodel

fit.setModel ("G")

# Define starting values for paraneters
fit.setParaneter("mean", 240)
fit.setParaneter("anp", 180)
fit.setParaneter("sigm", 20)

# Execute chi square fit

fit.chi SquareFit()

# Get back the fitted curve
_vfit=fit.fittedVector()

# Overlay points and fit

pl .dataOption ("representation”,"error")
pl.plot(vl, vfit)

# Now re-fit excluding the point
fit.excludePoi nt (46)

# Execute chi square fit
fit.chiSquareFit()

# Get back the fitted curve
_vfit=fit.fittedVector()

# Overlay points and fit

pl .dataOption ("representation","error")
pl.plot(vl, _vfit)

pl . reset ()

del fit

The result of the script is shownkingure 7.4

Figure 7.4. Excluding points from fit



000000 opeter 00000 [
100
[ I 1a
an L Entries 2al
L Mean 245.953
I RS 15,6103
B0 - Overflow 0
3 Underflow a
SN %2/ NDF 46.424 / 97
[ amp §5.0405 £ 3.55326
20 fMean £49.733 £ 0.653305
I zigma -14.7086 + 042726
0 | | | | | | | | | | | | | | | | | | |
o 100 300 400 200
100
I In] 10
a0 L } Entries 430
kean 248.953
I REAS 156103
B0 - Overflow 0
F Underflow a
40 - %2/ NDF 11.6901 / 96
[ arnp B6.0641 + 367136
20 fEarn £00.547 £ 0.703664
I zigma -14.5296 + 04684317
0 [ 1 | | | | | | | | | | | | | | | | |
o 100 200 300 400 200
H Coordinate : 279.091 % Coordinate : 33.6735

Notice the improved chi square and the decrement in the number of degrees of freedom.

Chapter 8. Using the Pl ot t er component

Table of Contents

Introduction
Working with zones
Plotting vectors on zones
Data representations and properties
Zone properties
Dataset (curve) properties
Dataset representations
Changing markers
Style properties
Line properties
Fill area properties
Working with text
Coordinates’ spaces



Adding titles and text
Showing text in Zone coordinates
Using TextStyle to change text appeareance

Mathematical formulas and special symbols

A quick introduction to MathML
Examples of MathML use in Lizard

| ntroduction

Lizard Pl ot t er component is based on the Qplotter package (which in turn uses the Qt tool
allows users to draw graphics on screen and in Postscript files. Although the underlying Qp
package is completely object oriented, Bhet t er component tries to expose a simpler user
interface which is somehow "similar" to PAW sequential approach. This is done in the hope
the transition of former PAW users to the new system and may eventually evolve in a more
interface.

The main features of tim ot t er component are summarized in this list:

The output on the screen is like the output on the page (i.e. no special treatment for p
The screen/page can be dividedisnes. So far only zones with the same dimensions ari
allowed in a page (although the underlying Qplotter package supports any type of zon
Each zone can contain several dataset (curves)

Datasets are instances of eithiett or orl Scatt er 2D classes.

It is possible to select individual zones at any time (or rely on the default strategy that
advances the current zone at each new plot).

Several options/properties are available ot the page/zone/dataset level.

The screen window contains a scene graph of the diagrams, thus it is possible to resi:
window without losing the output.

Postscript output can be produced at any moment during the preparation of the graph
special commands to start Postscript output, just take a Postscript snapshot of the cul
screen).

Working with zones

ThePl ot t er component allows to define the number of zones in a page. This is implemente
thezone() method which takes as arguments the number of zones along X and the numbel
zones along Y, as shown in the following script:

# Just one zone (default)
pl .zone(1, 1)

# Two zones on X, one on Y
pl . zone(2,1)

# One zone on X, two on Y
pl . zone(1, 2)

# Four zones

pl . zone(2, 2)

After the execution of theone() method, the first zone becomes the current one.

Plotting vectors on zones



As explained beforehand, the objects users can plot are instances ofegitloeror | Scat t er 2D
classes. Of course shortcuts suchmst () extend this by silently converting other objects
(histograms in this case) to a vector, but this does not change the rule. Since vectors are 1
than Scatter plots, most scripts in this chapter will create vector(s) and plot those. Lizard pr
two methods to draw a vector in a zone, as summariZédhle 8.4

Table 8.4. Pl ot t er methodsto draw a vector

Method Remark

| _ Plot one or two vectors on the current zone. The second V¢
Dot g;/l{/lyz) ’ will be drawn as a red line (handy for showing fit results). T
Vector v2 == 0: second vector is optional. The current zone is incremented

plotting.

overlay(vl, selectedzone); [Plotone vectoron the selected zone. The selected zone is
Vector vl; optional, default being the last zone used. The current zong
integer selectedZone == -1/ not incremented after plotting.

As an example the following script will creatéa 2) zone layout and plot one vector on the
current zone and the same vector on the fourth zone:

# These are Python lists
xvals = [0.,1.,2.,3.,4.,5.,6.,7.,8.,9.,10.]
yvals = [0.,1.,4.,9.,16.,25.,36.,49.,64.,81.,100.]

# Create a Lizard vector
vl = vmfronPy(xvals, yvals)

# Four zones

pl . zone( 2, 2)

# Plot on the current zone (1)
pl . plot(vl)

# Plot on zone 4

pl . overlay(vl, 4)

The result of the script is shownkiigure 8.2

Figure 8.2. Plotting vectors



100

aa

G0

40

1|

100 |
auf
auf
405

20 [

1 ¥ Coordinate : 1.40365e+308 Y Cootdinate : -1.71889e+308

Theoverl ay() method can be used in a more general way to draw different vectors on the
zone as explained the section called "Plotting vectors using several zofasplot a Scatter plc
rather than a vector, st section called "Scatter plots"

Data representations and properties

Lizard supports several representations for 1D and 2D datasets (histogram, line, box to nar
few). Each curve in a zone can have his own representation and it is possible to customize
appearance by changing properties between calls of th¢) method.

Plotter properties are defined according to the entity they apply to (e.g. page, zone or curve
their "domain”, i.e. text or graphics, as summarized in this list:

® Zone properties (e.g. logarithmic scales)

® Dataset (curve) properties (e.g. marker shape)
® Draw properties (e.g line color)

® Text properties (e.g. font info)

Properties are usually defined by key/value pairs, where the key identifies the property and
value defines the attribute, e.g.:



# Show hi stogram statistics
pl.zoneOption ("option","stats")

# Hi de histogram statistics

pl . zoneOption ("option", "nostats")

ThePl ot t er method i st Opti ons() enumerates all available properties:

:-) pl.listOptions ()
Options for Zones

--------------------- Zone Option List ---------m-mmmmonn-

The foll owi ng options for Zone objects are avail able

via the setProperty nmethod taking two strings as paraneter:

setProperty (string nane, string val ue).

("option"," xlinear xlog stats nostats ylinear ylog xaxisgrid yaxisgrid ")
("coordinates"," locked free ")

("mrroraxis"," yes no ")

Options for Datasets (curves)
No Dat aset avail abl e
Draw styl e options

--------------------- DrawStyle Option List -------------------

The followi ng options for DrawStyl e objects are avail abl e

via the setProperty method taking two strings as paraneter:

set Property (string nane, string value).

("linecolor","val ue")

("fillcolor","val ue")

("l'i newi dth", "val ue")

("l'i neshape"," none solid dash dot dashdot dashdotdot ")

("fillstyle"," none solid dense94 dense88 dense63 dense50 dense37 densel?2
dense06 horiz vert cross bdiag fdiag diagcross ")

--------------------- TextStyle Option List -------------------
The followi ng options for TextStyle objects are avail able

via the setProperty method taking two strings as paraneter:

set Property (string nane, string value).

("fontnane", "val ue")

("fontsize", "val ue")

("color", "val ue")

("bold"," yes no ")

("italic"," yes no ")

adobe-couri er
adobe- hel veti ca
adobe- new century school book
adobe-ti nes



application

avant gar de

bi tstream couri er
bi t streamt er ni nal

iébf chancery

Zone pr

operties

Zone properties are defined by calling the metho@pt i on() method which accepts two

arguments,

a key and a value:

Table 8.5. Zone properties

Key Value Remark
ontion xlinear xlog ylinear (Define whether one of the axis is linear(default) or
P ylog logarithmic.
option xaxisgrid yaxisgrid [Define whether the grid is activated (default no)
. Define whether the summary information is shown (defau
option stats nostats stats, i.e. shown).
Define whether the coordinate systems is locked by the fif
coordinateocked free curve (default) or changes according to each new curve
overlayed.
: : Define whether the the ticks on the axis should be mirrorg
mirroraxis jyes the top and right side of the zone (default no mirroring).

As an example, the following script exercises some zone properties:

# Create an histogram

hi st o=hm creat elD( 10, "t est

# Fill it with a gaussian

for i in range(0.,800.):
histo.fill(random gauss (24, 3))

# Set min/max on zone 1
pl . set M nMaxX (0, 200, 1)
# Enabl e statistics

pl.zoneOption ("option","

# Log scale on both axis

pl . zoneOption ("option","
pl .zoneOption ("option","

# Gid on both axis

pl .zoneOption ("option","
pl . zoneOption ("option","

1",50,0., 48.)

stats")

x| 0g")
yl og”)

xaxi sgrid")
yaxi sgrid")

# Mrror tickmarks on top and right-hand edges
pl.zoneOption ("mrroraxis","yes")

# plot the

hi st ogram

hpl ot (hi st o)
# Reset properties

pl . reset ()

The script produces the outputfigure 8.3




Figure 8.3. Using zone options

_II:IEI [ T T T TTTT T T T T TTTT T |DI T TTTT | TD:
C Entries G0
C hean 240414
B RIS 3.00981
| Cryerflow D]
Underflow 0
10 — —
1 |- —
1 I | | 1 1 I | 1 1 I I I I | |
1 10 100
1 H Coordinate : 5.69539 Y Coordinate : 115.369

Dataset (curve) properties

Dataset properties are defined by calling the mettaodpt i on() method which accepts two
arguments, a key and a value:

Table 8.6. Dataset properties



Key Value Remark
. llerror line histo marker errormark :
representatlorgmooth hfilled Select the representation for the 1D datas
representatigfox color Select the representation for the 2D datas
The legend of the curve in the summary
legend string information (e.g" Monte Carl o" ,"Data
2001").
none rect diamond triangle dtriangle
mtype utriangle ltriangle rtriangle xcross | The symbol used for the marker
ellipse
msize integer The size of the marker

Dataset representations

By changing the epr esent ati on property, it is possible to select the way a set of points will |
represented on the screen. The following script shows how to select different representatio
same 1D dataset:

# These are Python lists

# Alist fromO to 5

xvals = [x*1. for x in range(0.,6.)]
# Alist with values squared

yvals = [x*x for x in xval s]

# "Error’ on Xi.e. half binwidth
exvals = [0.5 for x in xvals]

# Error on Y, i.e. sqrt(Y)

eyvals = [sqrt(y) for y in yvals]

# Create Lizard vector
vl=vm fronPy(xval s, yval s, exval s, eyval s)

# Zone settings
pl . zone(3, 2)
pl . zoneOption ("option", "nostats")

# That’'s the default representation
pl . dat aOption("representation", "histo")

p! . plot(vl)

pl.zoneTitle("histo")

# Error

pl . dat aOption("representation","error")
p! . plot(vl)

pl . zoneTitle("error", 2)

# Line

pl . dat aOption("representation”,"line")
p! . plot(vl)

pl.zoneTitle("line", 3)
# Snooth |ine
pl . dat aOption("representation", "snooth")

p! . plot(vl)

pl . zoneTitl e("snooth |ine", 4)

# Marker

pl . dat aOption("representation", "nmarker")
p! . plot(vl)

pl.zoneTitl e(" marker",5)
# NMarker + error



pl . dat aOption("representation”, "errormark")
pl . plot(vl)
pl . zoneTitl e("marker+error", 6)

The script outcome is shown kiigure 8.4

Figure 8.4. Different representationsfor 1D datasets

histo error line

zn;- Jr
m;- 1

0 u_l.n.nj.n_.m_l.nu.n.l...m.l.n...n.n.l...;
012 348 01 2348 o1 2 3 4 5
smooth line marker marker+errar
25 b (O an t

20 F %
15 - ey +
mz- o ol ¢
T &

w .ﬂw
DD12345 DD12345

¥ Coordinate : 0321265 Y Coordinate : Z6.940

Similarly we can change the representation for a 2D dataset, as in this example which plots
same dataset using the color representation first with eigth basic colors, then with geograpl
palettes with increasing resolution:

# Show the Col or plot feature
# book hi stogram
h3 = hm create2D(" 20", "phi", 100, - 100, 100, 100, - 100, 100)

for x in range(-100,100.,1):
for y in range(-100, 100., 1):
h3.fill(x,y, x*x+y*y)

# Two zones
pl . zone(2, 2)



# Pl ot histogram as col or pl ot

# Sel ect color representation

pl .dataOption ("representation”,"color")

# Plot with eight basic colors

hpl ot ( h3)

# Plot with geographical palette of sixteen colors

pl . dataOption ("colorlevel s","16")

hpl ot (h3)

# Plot with geographical palette of thirty-two colors
pl . dataOption ("col orl evel s","32")

hpl ot (h3)

# Plot wth geographical palette of 240 col ors (nmaxi num
pl . dataOption ("colorlevel s","240")

hpl ot (h3)
# Reset
pl . reset ()

pl . dataOption ("representation”, "box")

The script output is shown Figure 8.5

Figure 8.5. Different representationsfor 2D datasets

100
50
0
-50
T 0 50 100
100 100
50 50
0 0
-50 -50
SO0 -0 i 50 100 “21p0  -50 i 50 100
¥ Coordinate ©  -81.876 ¥ Coordinate © 98,9597

Changing markers



Lizard allows the user to change the marker symbol and its size wayttheandnsi ze
properties. The marker type can be chosen among the list giVable 8.6 The marker size is
defined in pixels (...), the default being. The following script shows how to use these feature

# These are Python lists

# Alist fromO to 5

xvals = [x*1. for x in range(0.,6.)]
# A list with values squared

yvals = [x*x for x in xvals]

# "Error’ on Xi.e. half binwidth
exvals = [0.5 for x in xvals]

# Error on Y, i.e. sqgrt(Y)

eyvals = [sqrt(y) for y in yvals]

# Create Lizard vector
vl=vm fronPy(xval s, yval s, exval s, eyval s)

# Zone settings
pl . zone(2, 2)
pl . zoneOption ("option", "nostats")

# Marker
pl . dat aOption("representation", "marker")
pl . pl ot (vl)

pl.zoneTitle("marker", 1)

# Marker + error

pl . dat aOption("representation", "errormark")
pl . pl ot (vl)

pl.zoneTitl e("marker+error", 2)

# Rectangul ar mar ker

pl . dat aOption("representation”, " marker")
pl .dataOption ("ntype","rect")

p! . plot(vl)

pl . zoneTitl e("Rect marker", 3)

# Rectangul ar marker size 20

pl . dat aOption ("nsize","20")

pl . plot(vl)

pl.zoneTitl e("Rect marker size 20", 4)

pl . reset ()

The resulting output is shown kigure 8.6

Figure8.6. Markers



—| Qplotter ||

marker marker+errar

B

Rect marker Fect marker size 20
25 | O 25 | []

20 F 20 |

10 F N 1EI;— |:|
9 0O s [ |:|

. i
0 0 bl

A ETETE R SN
2 i 4 3

1 ¥ Coordinate : 4 92673 % Coordinate : 20.0084

Notice that it is possible to have filled markers as well, as explairteée section called "Fill aree
properties

Style properties

Before showing more properties of the dataset, it's time to introduce so called "Style propet
These properties allow the user to modify the appearence of a curve in terms of line shape.
color, line width, fill color etc. Style options are changed viadthest yl e() method of the
plotter. The following table summarizes the key/value pairs accepted by such method:

Table 8.7. Data style properties



Key Value

Remark

blue,white,black,red,green,yellow,magenta,cyan,darkgray,lightgra

linecolor darkred,darkgreen,darkblue,darkcyan,darkmagenta,darkyellow

Color of the
Ii%aﬁsed to
draw the curve

linewidth|value

Width of the
line used to
draw the curve
Width is in
pixels, default
is 1.

lineshapgnone solid dash dot dashdot dashdotdot

Shape of the
line used to
draw the curve

Color of the fill

blue,white,black,red,green,yellow,magenta,cyan,darkgray,lightgrayegeay(for a

horiz vert cross bdiag fdiag diagcross

fillcolor darkred,darkgreen,darkblue,darkcyan,darkmagenta,darkyellow |filled
representation
Style of the

fillstyle none solid dense94 dense88 dense63 dense50 dense37 denseldfilatsabéa

(density or

hatch style)

Line properties

This script shows how to use style options to change the way a curve is drawn. Notice the |

another property of the curve, thegend property mentioned ifable 8.6

# These are Python lists

xvals = [0.,1.,2.,3.,4.,5.,6.,7.,8.,9.,10.]

yvals = [0.,1.,4.,9.,16.,25.,36.,49.,64.,81.,100.]
# Create Lizard vectors

vl = vm fronPy(xval s, yvals)
v2 = vm fronPy(xval s, yvals)
v3 = vm fronmPy(xval s, yvals)
v4d = vm fronPy(xvals, yvals)
v2.mul (2.)
v3.mul (3.)
va. mul (4.)

# Use line representation

pl . dat aOption("representation”,"line")

# Set zone nin max to nmake | egends nore readabl e
pl . setM nMaxX(0, 12. 5, 1)

# First curve (default style)
pl . dataOption ("l egend", "v1l")
pl . plot(vl)

# Change |line color

pl .dataStyl e("linecol or", "blue")
pl . dataOption ("l egend", "v2")

pl . overl ay(v2)

# Change line color, width



pl . dataStyl e("linecol or", "green")
pl.dataStyl e("linew dth","2")

pl . dataOption ("l egend", "v3")

pl . overl ay(v3)

# Change line color, wdth, shape
pl .dataStyl e("linecolor","red")

pl .dataStyle("linew dth","3")

pl . dataStyl e("1ineshape", "dashdot ")
pl . dataOption ("l egend", "v4")

pl . overl ay(v4)

# Reset data style
pl . reset ()

The script output is shown Figure 8.7

Figure 8.7. Use of data style and legend properties

vl
100

we

W

&0 wd
G0
40
20

L
4 12
1 ¥ Coordinate : d.1 244 % Coordinate : 109.64

The effect of theé egend property is to associate a given comment to a specimen of the line L
draw the curve. A similar behaviour is implemented for markers as weth@asection called "Fi
area properties"



Fill area properties
There are basically two properties related to a fill area:

® The fill color (e.g. blue,red,green,etc.)
® The fill style (e.g. none,solid,horiz ,etc.)

The default values akei t e color anchone pattern, i.e. a fill area is not visible by default. In o

to make the area visible, both properties should be set to meaningful values, as in the folloy
script taht shows four similar histograms filled with the same color and different styles:

# Create histograns

hl=hm creat el 10, "Curve 1",50,0., 48.)
h2=hm creat el 20, "Curve 2",50,0., 48.)
h3=hm creat el 30, "Curve 3",50,0., 48.)
h4=hm creat el 40, "Curve 4",50,0., 48.)

# Fill themw th gaussi ans
for i in range(0., 800.):
hl.fill (random gauss (8, 2))
h2.fill (random gauss (18, 2))
h3.fill (random gauss (28, 2))
hd.fill (random gauss (38, 2))

# No statistics
pl . zoneOption ("option", "nostats")

# Plot as filled histograms

pl . dataOption("representation","hfilled")
# Fill color is blue for all of them
pl.dataStyle("fillcolor", "blue")

# Overlay histograns with different patterns (black is the line color)
pl .dataStyle("fillstyle","solid")

hpl ot ( h1)

pl.dataStyle("fillstyle","dense88")

hpl ot (h2, "0", "bl ack")

pl .dataStyle("fillstyle","dense50")

hpl ot (h3, " 0", "bl ack")

pl.dataStyle("fillstyle","di agcross")

hpl ot (h4, "0", "bl ack")

# Reset properties
pl . reset ()

The script output is shown Figure 8.8

Figure 8.8. Use of fill area properties



150 —

]

LA
pivie

T
:
G

T
7 7
4
K, T
frisieteiielels

o
!
ol

100 —

T
78
i
LY

e 7]
o
ety

Iy

L
L

b

s
R
Sl

L

[

At
45
e

To]

5
aiels!
ottt

L
o
L
L

al -

P o
Sty
555
L
hytyt
e

L
L

g
R
35
ey
ol

S
o
5
355

o
L

o M—
otale!

,,
e,
ol
5

e

b
hytyt
5
Retey
5
£

o
L

| ¥ Coordinate - 412692 V¥ Coordinate - 172122

In this case thefi | | ed representation has been used to fill the area inside the histograms, [
same technigues can be used to fill markers:

# these are Python lists

xvals =[0.,1.,2.,3.,4.,5.,6.,7.,8.,9.,10.]

yvals = [0.,1.,4.,9.,16.,25.,36.,49.,64.,81.,100.]
# Create Lizard vectors

vl = vmfronPy(xvals, yvals)
v2 = vm fronPy(xval s, yvals)
v3 = vm fronPy(xval s, yvals)
v4 = vm fronPy(xvals, yvals)
v2. mul (2.)
v3. nul (3.)
va4. nul (4.)

# Set zone min max to make | egends nore readabl e
pl . setM nMaxX(0, 12. 5, 1)

# Connecting |ines

pl . dataOpti on("representation”,"line")
pl . plot(vl)
pl . overl ay(v2)

.overlay(v3)
.overl ay(v4)



# Use marker representation

pl . dat aStyl e("lineshape", "solid")

pl . dat aOption("representation", " marker")
# First curve (default style)

pl . dataOption ("l egend", "v1l")

pl . overlay(vl)

# Change marker shape, fill color, fill style
pl .dataOption ("ntype","rect")

pl . dataOption ("l egend", "v2")

pl . dataStyle("fillcolor","blue")
pl.dataStyle("fillstyle","solid")

pl . overl ay(v2)

# Change fill color, fill style

pl . dataOption ("l egend”, "v3")
pl.dataStyle("fillcolor","red")
pl.dataStyle("fillstyle","dense37")
pl . overl ay(v3)

# Default marker white filled

pl .dataOption ("ntype","")

pl . dataStyle("fillcolor","white")
pl.dataStyle("fillstyle","solid")
pl . dataOption ("l egend", "v4")

pl . overl ay(v4)

# Reset data style
pl . reset ()

The new output is presentedHrigure 8.9

Figure 8.9. Filled markers



_e_ Wi
100

—m- We

—E W3

an — v
G0
40
£0

D | | | |
12
¥ Coordinate : 9 4RE31 Y Coordinate 107 408

Finally the same properties can be used withhtle?D representation, as done by this script:

# Create histogram
hl=hm creat e2X 10, "2D Gaussi an", 50,0., 48.,50,0., 48.)
# Fill it with a gaussian
for i in range(0.,800.):
hi.fill (random gauss (25, 8), random gauss (25, 8))

# No statistics
pl.zoneOption ("option", "nostats")

# Fill color is blue
pl.dataStyle("fillcolor","yell ow")
pl .dataStyl e("linecol or", "blue")

# Filled box plot
pl.dataStyle("fillstyle","solid")
hpl ot (h1)

# Reset properties
pl . reset ()

Figure 8.10. Filled boxes



= [
- a E o
40 (— o e E Em
0o =N LI noBE
B [E] n E nEDEE mpeE nEnR m = B
L] npgp Mm@ [oh- )] npomE
t-- [=] [=] o gEoo.oo . m o =1 _1}
o [=] o ol o mMEo o
- [l 00 _GE HE &oEo 0o o B
Hoool celc D@ 5l [l
- ma 51 DoEERNDE@NaM M|
om m m m om |I||I| IIEI:I. @ mm
3|:| | m mOoO@W @O mm EEEHB [} m L]
o B O Ef olE © BERn EEE BAE o
- 1] nEnn0 H Eu onpnoolEE @ jaf.]
ooof o noogo [=Nm]| EIEIE =] oo o
| oo =] o o EEEOEE o (=N o=
o oo@Mo =] a [l]l:ll:l [ R=] =]
L DEEE ] == 0 a 0o B B @ 5] ] | ]
] ] IIEIEEE ENz@ HEE_E EE o
| oo [ ] LN T aEo@EE o= FEm = =D N
P gl LR
20— B qum muuumum oomE@ 5E B B
oo = oEER HEE m n EHEER EIE Hom
I~ ooo E = oo oo a a ooo =]
o oo oo oE B[ o
- m B oo ooo o o
oo B W 5] mm 5] 0 ol [} B
- o oo E GOE EE 00 @ = ]
= mm nomE =H o
= = B nEE
10 — B = o] =
-] .}
- [r] Ir]
&
1] oo by by by by
] 10 Pl a0 40
4 # Coordinate : 287741 Y Coordinate ;. 47.8398

Working with text

Lizard allows users to add titles to a page or a zone, as well as to put text in arbitrary positi
Moreover it's possible to change the appeareance of text by modifying ploger's yl e.

Coordinates spaces

In order to place text on the page or zone, it is important to understand the basics of the co
systems in Lizard. From the user point of view there are basically two coordinate systems:

® Page coordinate system (210X210, unit is millimeter)
® Zone coordinate system (according to the zone coordinates)

The Page coordinate system starts from the bottom left corner of the drawing area (the are
white background color). Coordinates go left-to-right and bottom-to-topdrtom10 (210 is the
size of the drawing area in millimeter when printed on A4 paper).

The Zone coordinate systems starts from the bottom left corner of the zone (i.e. the origin ¢
Coordinates go left-to-right and bottom-to-top from minimum to the maximum values in X a
This means that the coordinates are affected by the change on the min/max value on one ¢



(exactly as in PAW).
Adding titlesand text
The relevant methods are summarizediable 8.8

Table 8.8. Pl ot t er methodsto add text

Method Arguments |Remark|

zoneTitle(title, zone); ; . .
string title: Set the title of the given zone (default is zorle

i nt eger zone; 1)
pageTitle(title);
string title;
zoneText ( Xcoor di nat e,

Ycoordi nate, text, zone); . ) _
doubl e Xcoor di nat e; Add text at position (Xcoordinate,Ycoordinate)

doubl e Ycoor di nat e; on the given zone (default is zone 1)
string text;

i nt eger zone;

pageText ( Xcoor di nat e,

Ycoordi nate, text); " . .
i nteger Xcoor di nat e: Add text at position (Xcoordinate,Ycoordinate)

i nt eger Ycoordi nat e; on the page (default is zone 1)
string text;

Set the title of the page

The following script shows how to use those methods:

# These are Python lists

# Alist fromO to 5

xvals = [x*1. for x in range(0.,6.)]
# Alist with values squared

yvals = [x*x for x in xval s]

# "Error’ on Xi.e. half binwidth
exvals = [0.5 for x in xvals]

# Error on Y, i.e. sqrt(Y)

eyvals = [sqgrt(y) for y in yvals]

# Create Lizard vector

vli=vm fronPy(xval s, yval s, exval s, eyval s)

# Plot data

pl . pl ot (vl)

# Page title

pl . pageTitle("Page Title")
pl.zoneTitle("Zone 1 title", 1)

# Put additional text one zone 1

pl . zoneText (1, 20,"Zone Text at (0,20)", 1)
# Put text on the page

pl . pageText (5,5, " EUREKA!I'")

pl . reset ()

I mportant

The call topageTi t | e() should happen after the first callgioot (), since thepl ot () method ma
cleanup the page.



The script produces the outputRigure 8.11

Figure8.11. Text and titles

— Qplotter [

Page Title
Zone 1 title

25

o0 = Zone Text at (0,200

15 —

10 —

5 -

0 co b oo oo v oo Ly

0 1 Z 3 4 3

EUREEA!

¥ Coordinate : 2.1 7647 Y Coordinate : 12.9951

Showing text in Zone coor dinates

As mentioned in théhe section called "Coordinates’ spacesxt placed according to the Zone
coordinate system ‘moves’ depending on the limits defined by the user. The following script
the same curve and the same text in two zones, the latter with user-defined minimum and r
limits:

# These are Python lists

# Alist fromO to 5

xvals = [x*1. for x in range(0.,6.)]
# Alist with values squared



yvals = [x*x for x in xvals]

# 'Error’ on X i.e. half binw dth
exvals = [0.5 for x in xvals]

# Error on Y, i.e. sqgrt(Y)

eyvals = [sqrt(y) for y in yval s]

# Create Lizard vector
vl=vm fronPy(xval s, yval s, exval s, eyval s)

# Zone settings

pl . zone(2,1)
# Zone 1
pl . plot(vl)

# Put additional text one zone 1
pl . zoneText (1,20, "Zone Text at (0,20)",1)

# Reset all properties

# Zone 2

# Change min/nmax to show i mpact on Zone coordi nates
pl.reset ()

pl . set M nMaxX( 0, 10, 2)

pl . set M nMaxY(0, 50, 2)

pl . plot(vl)

# Put additional text at the same coordi nates on zone 2
pl . zoneText (1, 20,"Zone Text at (0,20)", 2)

pl.reset ()

The output irFigure 8.12hows how the text position changes according to zone limits.

Figure 8.12. Placing text in Zone coor dinates



- 50
25 -
L 40 =
o0 L Zone Text at (0,20 i
i 30
15 |- -
i >0 | Zane Text #t (p,20)
10 -
e [ 10
D 1 1 1 1 1 1 |:| | | | |
0 1 2z 3 4 5§ 0 2z 4 8 8 10
4 ¥ Coordinate : 0423471 % Coordinate : 47 2645

Using TextStyle to change text appear eance

The visual appeareance of a piece of text (e.g. font, color etc.) can be customized by using
t ext Styl e() method of the plotter. THEable 8.9summarizes the key/value pairs accepted by
such method:

Table 8.9. Text style properties



Key Value Remark
color blue,white,black,red,green,yellow,magenta,cyan,darkgray,lightgrayCtyhoy of the
darkred,darkgreen,darkblue,darkcyan,darkmagenta,darkyellow |text
Name of the
fontnamestring Egggﬁmg’
Helvetica)
Height of the
fontsize (integer font in points
(1/72 inch)
bold yes no Bold attribute
italic yes no Italic attribute

As a real example of setting text attribute, the following snippet of Python code shows how
declare a function that sets all text attributes in one go:

# A Python function to set text attributes
def textProp(nane, size,bold,italic,color="black")
pl.textStyle ("fontnanme", name)
pl.textStyle ("fontsize",size)
pl.textStyle ("bold", bol d)
pl.textStyle ("italic",italic)
pl.textStyle ("color",color)

Such function could be used, e.g. to set the current font to a 18 points Courier with bold an
attributes:

text Prop("Courier™,"18","yes", "yes")

Text attributes can be defined independently for each piece of text in the page, as in this ‘w
script:

# A Python function to set text attributes
def textProp(nane,size,bold,italic,color="black")
pl.textStyle ("fontnanme", name)
pl.textStyle ("fontsize", size)
pl.textStyle ("bold", bol d)
pl.textStyle ("italic",italic)
pl.textStyle ("color",color)

NSNS AN

# These are Python lists

# Alist fromO to 5

xvals = [x*1. for x in range(0.,6.)]
# Alist with values squared

yvals = [x*x for x in xvals]

# "Error’ on X i.e. half binwdth
exvals = [0.5 for x in xvals]

# Error onY, i.e. sqrt(Y)

eyvals = [sqrt(y) for y in yvals]

# Create Lizard vector



vl=vm fronPy(xval s, yval s, exval s, eyval s)

# Zone settings
pl . zone(2,1)
pl . zoneOption ("option", "nostats")

# Zone 1 global font : Courier 14 points, bold, italic

text Prop("Courier","14", "yes", "yes")

pl . pl ot (vl)

pl.zoneTitle("Zone 1 title", 1)

# Zone 1 font for additional text : Helvetica 12 points, bold, blue
t ext Prop(" Hel vetica","12","yes", "no", "bl ue")

# Put additional text one zone 1

pl . zoneText (1, 20,"Zone Text at (0,20)", 1)

# Reset all properties

# Change min/max to show i npact on Zone coordi nat es
pl.reset ()

pl . set M nMaxX(0, 10, 2)

pl . set M nMaxY(0, 50, 2)

pl . pl ot (vl)

# Zone 2 font for additional text : Helvetica 12 points, italic, nagenta
t ext Prop("Hel vetica","12","no", "yes", "nagent a")

# Put additional text at the sanme coordi nates on zone 2
pl . zoneText (1, 20,"Zone Text at (0,20)", 2)

pl.reset ()

pl.zoneTitle("Zone 2 title", 2)

# Some text in Page coordi nate system using Symbol font
t ext Prop("synbol ", " 24", "yes","no", "red")

pl . pageText (0, 0, " EUREKA!I'")

# Last setting

t ext Prop("Hel vetica", "16", "no", "no", "dar kgreen")

pl . pageTitle("Page Title")

pl . reset ()

The output irFigure 8.13s similar to what done before, but now each piece of text has its ov
attributes:

Figure 8.13. Changing text properties



Fage Title
Zone 1 title =0 Zane ¢ title
25— B
L a0 —
20|  Zone Textat (0,20) i
i 30—
15— B
= 20 2
14
5 | 10
g?.l....||||||||||||||||I|| |:| P 1
& I = = 4 5 i 10
EYPEKA!
1 ¥ Coordinate : 9 614885 Y Coordinate 21721

Mathematical formulas and special symbols

Lizard allows users to show mathematical formulas or text including math symbols whereve
text is accepted. The markup of the formulas is based on a subset of MathML, the Mathem
Markup language endorsed by the W3C Consortium[{#€MathHome] for details). Apart fron
using a markup syntax in the text, there’s no difference on the methods’ signature, e.g.:

# A legend with the methane chem cal fornula using subscript

pl .dataOption ("l egend", " <gpmat h><nsub><m >CH</ m ><m>4</ m></ nsub></ qpnat h>")
# A legend with the methane chem cal formula whithout subscript

pl . dataOption ("l egend", " CH4")

Notice how the MathML text is identified by the pair of tagsmat h> and</ gpmat h>. If no such
tag is used, the content is rendered as plain text.

A quick introduction to MathM L

Taken from the W3C Math Home Page. * MathML is intended to facilitate the use and re-use of
mathematical and scientific content on the Web, and for other applications such as comput



algebra systems, print typesetting, and voice synthesis. MathML can be used to encode bo
presentation of mathematical notation for high-quality visual display, and mathematical con
applications where the semantics plays more of a key role such as scientific software or vo
synthesis. MathML is cast as an application of XML. As such, with adequate style sheet su
will ultimately be possible for browsers to natively render mathematical expressions. For thi
immediate future, several vendors offer applets and plug-ins which can render MathML in
a browser. Translators and equation editors which can generate HTML pages where the m
expressions are represented directly in MathML will be available soon. ’

On first sight, MathML looks much like XHTML, i.e. :

<nr ow>
<nT ow>
<BUP> <mi >X</ m > <mMm>2</ m> </ nsup> <no>+</ no>
<nr ow>
<m>4</ m>
<nmo>&l nvi si bl eTi nes; </ no>
<m >x</ m >
</ nr ow>
<no>+</ np>
<m>4</ m>
</ nr ow>
<nmo>=</ no>
<m>0</ m>
</ nTr ow>

but the set of tags is of course targeting mathematical formula representation (the tags in tf
previous example belongs to the so-called ‘presentation markup’. An equivalent ‘content m
is supported as well, but this goes far beyond the scope of this document). Notice how elen
properly nested (start tag followed by end tag), according to XML requirements of

well-formedness. The set of elements (tags) supported in Lizard is summarized in the next

Table8.10. MathM L elements

Name Meaning
<mi> identifier
<mn> number
<mo> operator, fence, or separator
<mtext> text
<ms> string literal
<mrow> group any number of subexpressions horizontally
<msqrt> form a square root sign (radical without an index)
<msub> attach a subscript to a base
<msup> attach a superscript to a base
<msubsup> |attach a subscript-superscript pair to a base
<munder> |attach an underscript to a base
<mover> attach an overscript to a base
<munderovertattach a underscript-overscript pair to a base




Symbols (including greek letters) are marked-uprasti es i.e. identifiers enclosed betwe&n
and; , such asal pha; . Although MathML allows to mix symbols in the text, Lizard requires t
symbols (including greek letters) should be in an element of their own, e.g.:

# Correct

pl . pageText (30, 160, "<gpmat h><m >&ganmg; </ m ><ns> rays shower </ ms></ gpmat h>")
# Wong

pl . pageText (30, 150, "<gpmat h><ms>&gamma; rays shower </ ns></ qpnat h>")

This is a limitation that will certainly be overcome in future releases. A complete lists of all ¢
supported is shown iRigure 8.14

Figure 8.14. Entitiesavailablein Lizard

|l

alphaza  mu=y tho=p  int=| le=x
beta=p  nu=v sigma=c mnplus=t ge==
chi=y omega=w Sigma=Z nabla=V exist=1
delta=6 Omega=Q tau=t sum=2, forall=¥
Delta=A  omicron=o0 theta=8 nbsp= plusmn=4%
epsi=¢ phi=d¢ Theta=0 larr=— part=9
eta=1) Phi=d thetav=1 rarr=e—  middot=»
gamma=y phiv=gp upsi=v  horbar=— hArr=«
Gamma=I" pi== Upsi=Y prod=I] prop=-=
iota=1 Pi=II xi=E ape=z  radic=V
kappa=k piv=0 Ai=1) ap== OverBar="
lambda=A psi=y zeta={  It=<
Lambda=APsi=¥ infin=ee  gt=>

Examples of MathML usein Lizard

As stated beforehand, text marked-up with MathML can be used wherever plain text is acce
(e.q. titles, labels, arbitrary text, legends). In these examples the MathML text will be placec
page coordinate system using pageText () method of the plotter.



Showing a single Greek letter

The Greek letter represented by an entity having the same name. Greek letters in capital al
having the same name with the first letter capitalized&d®.t a; vs.&Del t a; ). The symbol entit
is enclosed in andent i fi er element<ni >), then surrounded by the element that identifies th
text as MathML £gpmat h>):

# Greek letter
pl . pageText (50, 180, "<gpmat h><m >&al pha; </ m ></ qpnmat h>")

Using subscript, super script

There are three elements that can be usadib>, <msup> and<nsubsup>, as in the following
code:

# Superscript: al pha squared

pl . pageText (50, 170, " <gpnmat h><nsup><m >&al pha; </ m ><mMm>2</ m></ nsup></ qpnat h>")

# Subscript: oxygen

pl . pageText (50, 160, " <gpmat h><nsub><m >0O</ m > <mMm>2</ m> </ msub></ gpmat h>")

# Subscript: Kronecker’'s synbol

pl . pageText (50, 150, "<gpnmat h><nsub><m >&del t a; </ m ><m >i j </ m ></ nsub></ qpmat h>")
# Subscript/superscript: the R emann’s tensor

pl . pageText (50, 135, " <gpmat h><nmsubsup><m >R</ m ><m >n1 n</ m ><mi >l </ m ></ nsubsup><;

The first element is always the base. In the casewaifo> and<nmsup>, the second element is the
subscript/superscript. Fensubsup>, the second element is the subscript, the third element is
superscript.

Using under script, over script

There are three elements that can be usegchder >, <nover > and<nunder over >, as in the
following Python code:

# Under scri pt

pl . pageText (50, 125, " <gpmat h><munder ><m >&Si gna; </ m ><ns>i =0</ ns></ nunder ></ qpmat
# Overscript

pl . pageText (50, 105, " <gpmat h><nmover ><ni >&Si gna; </ m ><mi >& nfin; </ m ></ mover ></ gpm
# Al'l together now

t ext =" <gpmat h><nmunder over ><nmi >&Si gma; </ m ><ns>i =0</ ne><m >& nfin; </ m >"

t ext =t ext +" </ nunder over ></ gpmat h>"

pl . pageText (50, 90, t ext)

The first element is always the base. In the casenofder > and<nover >, the second element is
the underscript/overscript. Ferrunder over >, the second element is the underscript, the third
element is the overscript.

Squareroot

The<nsqgrt > allows the user to show the square root of an expression, as in this code:



# Square root: notice the use of <nrow> to "glue" the sumof two terns

# Square root: notice the use of <nrow> to "glue" the sumof two terns

t ext =" <gpmat h><nsqrt ><nT ow><nmsup><ni >a</ m > <Mm>2</ m> </ nsup>"

t ext =t ext +" <mp>+</ no><nsup><m >b</ m > <M>2</ Mm> </ nsup></ nr ow></ msqrt ></ gpmat h>'
pl . pageText (50, 75, t ext)

The<nsqgrt > element accept another element, the expression the operator applies to. In this
example the expression consists of the sum of two terms, so they have to be glued togethe
the<nr ow> element.

Integral

Although there’s no special element for an integral, it is possible to typeset one using other
MathML elements. The Lizard implementation is quite primitive, since the integral operator
"stretchy", i.e. does not adjust its size according to the argument:

# An integral

t ext =" <gpmat h><nr ow> <nunder over ><m >&i nt ; </ m ><nT ow><np>- </ Mp>"

t ext =t ext +" <mi >& nfi n; </ m ></ nr ow><nT ow><m >&nbsp; </ mi ><ni >&nbsp; </ M ><mi >& nfin
t ext =t ext +" </ nunder over ><nr ow><mi >&nbsp; </ M ><nsup><ni >e</ M ><nT OW><ND>- </ ND><M
t ext =t ext +" </ msup><m > dx</ m ></ nr ow></ nr ow></ gpnmat h>"

pl . pageText (50, 60, t ext)

The well-known PAW example

As a final proof on how tricky markup could be, here’s the MathML text to show a well know
example taken from the PAW manual:

# The fanous PAW exanpl e:

t ext =" <gpmat h><nr ow> <nsub><m >L</ m > <m >enx/ m ></ nsub><np>=</ np>"

t ext =t ext +" <m >&nbsp; </ M > <m >e</ m ><ni >&nbsp; </ M > <neubsup><m >J</ m ><mni >enx/ |
text =text+" <m >&nmu; </ M ></ msubsup><nmsub><m >A</ i > <m >&mu; </ M ></ msub><m >&nbs
text =t ext +"<m >, </ m ><m >&nbsp; </ M ><nsubsup><m >J</ m ><m >enx/ m > <m >&mu; </ m >
t ext =t ext +" <mp>=</ np> <nover ><ni >| </ M ><np>_</ no></ nover ><m >&nbsp; </ M ><nsub><m
text=text +"<m >l </ mi ><m >&nbsp; </ M ><m >, </ M ><m >&nbsp; </ m ><nsubsup><m >M/ nmi >
t ext =t ext +" <no>=</ N> <munder over ><m >&sunm </ m > <nr ow><mi >&nbsp; </ m ><m >&al pha
t ext =t ext +" <nT ow><m >&nbsp; </ m ><m >& nfi n; </ m ></ mr ow></ munder over ><nsub><m >A<
t ext =t ext +" <nmBubsup><m >&t au; </ m ><nr ow><m >&al pha; </ m ><m >j </ m ></ mow> <m >i <
pl . pageText (50, 45, t ext)

Thewhole example

Wrapping up all these examples in a single Pyhton script would look like that:

pl.zone(1,1)

pl.textStyle ("fontsize","20")

# Geek letter

pl . pageText (50, 180, "<gpmat h><m >&al pha; </ m ></ qpmat h>")

# Superscript: al pha squared

pl . pageText (50, 170, " <gpmat h><nmsup><m >&al pha; </ m ><mMm>2</ m></ nsup></ qpmat h>")
# Subscript: oxygen

pl . pageText (50, 160, "<gpmat h><nmsub><ni >0</ m > <Mm>2</ m> </ nsub></ gpmat h>")

# Subscript: Kronecker’s synbol

pl . pageText (50, 150, " <gpmat h><nmsub><m >&del t a; </ m ><m >i j </ m ></ msub></ qpmat h>")



# Subscript/superscript: the R emann’s tensor

pl . pageText (50, 135, "<gpmat h><nsubsup><m >R</ m ><mi >m n</ m ><m >| </ m ></ nsubsup><,
# Underscri pt

pl . pageText (50, 125, " <gpnmat h><munder ><mi >&Si gna; </ m ><nms>i =0</ ms></ munder ></ qpmat |
# Overscript

pl . pageText (50, 105, "<gpnmat h><nover ><m >&Si gma; </ m ><ni >& nfi n; </ m ></ mover ></ qpm
# Al together now

pl . pageText (50, 90, " <qpmat h><nunder over ><mi >&Si gma; </ n ><me>i =0</ me><m >& nfin; </ |
# Square root: notice the use of <nrow> to "glue" the sumof two terns

t ext =" <gpmat h><nsqrt ><nTr ow><nsUpP><m >a</ M > <M>2</ Mm> </ msup>"

t ext =t ext +" <mp>+</ no><nsUp><ni >b</ m > <M>2</ Mm> </ nsup></ nr ow></ nsqrt ></ gpmat h>'
pl . pageText (50, 75, t ext)

# An integral

t ext =" <gpmat h><nr ow> <nunder over ><m >&i nt ; </ m ><nr ow><np>- </ Mp>"

text=text +"<m >& nfin; </ m ></ nmr ow><nT ow><mi >&nbsp; </ m ><ni >&nbsp; </ M ><m >& nfin
t ext =t ext +" </ nunder over ><nr ow><ni >&nbsp; </ M ><nsup><ni >e</ M ><nT OW><ND>- </ ND><M
t ext =t ext +" </ msup><m > dx</ m ></ nr ow></ nr ow></ gpnmat h>"

pl . pageText (50, 60, t ext)

# The fanobus PAW exanpl e:

t ext =" <gpmat h><nr ow> <nsub><mi >L</ ni > <mi >enx/ ni ></ msub><no>=</ no>"

t ext =t ext +" <m >&nbsp; </ M > <m >e</ m ><ni >&nbsp; </ M > <msubsup><m >J</ m ><m >enx/ |
t ext =t ext +" <nBub><m >A</ m > <m >&nu; </ M ></ nsub><m >&nbsp; </ m ><ni >, </ M ><m >&nb:
t ext =t ext +" <msubsup><m >J</ m ><m >enx/ m > <m >&nmu; </ m ></ msubsup> <np>=</ m>"

t ext =t ext +" <mover ><m >l </ m ><np>_</ no></ nover ><m >&nbsp; </ m ><nmsub><m >&gammg; </ |
text =t ext +" <m >| </ m ><m >&nbsp; </ M ><m >, </ M ><m >&nbsp; </ m ><msubsup><m >M/ mi >
t ext =t ext +" <nmp>=</ o> <nmunder over ><ni >&sun </ m > <nr ow><ni >&nbsp; </ m ><m >&al pha
t ext =t ext +" <nT ow><ni >&nbsp; </ m ><m >& nfin; </ m ></ mr ow></ nunder over ><nsub><m >A<
t ext =t ext +" <msubsup><m >&t au; </ m ><nr ow><m >&al pha; </ m ><m >j </ mi ></ nr ow> <mi >i <
pl . pageText (50, 45, t ext)

The output of such script can be seefigure 8.15

Figure 8.15. Examplesof MathML in Lizard



08],<

ey

mre

1

m
)

Tgww

a‘+b®

[:e'x dx

L=elA =Tyl M=YAcZ

1 ¥ Coordinate : -1 64671e+308 % Coordinate : -1.705376e+308

Chapter 9. Using the Anal yzer component

Table of Contents

Introduction
Use of shared libraries
Building a shared library
Interaction between Lizard and the user code
Making a shared library visible to programs
Someanal yzer examples
The simplest example
Structuring user code and compiling via gmake
Interacting with thed st oManager component
Ntuple analysis using thanal yzer
Introduction
Key concepts of Lizard ntuple analysis in C++
An example of Lizard ntuple analysis in C++
Writing ntuples using thenal yzer
Fitting using thennal yzer
Introduction




Key concepts of using thal yzer for fitting

| ntr oduction

TheaAnal yzer component allows Lizard users to execute "external" C++ code compiled as ¢
library. Such a feature would allow, e.g., to run experiment-specific code (e.g. simulation or
reconstruction) straight from Python. Since the coupling between Lizard and the user code
weak, theanal yzer does not impose any contraint to the external code in terms e.g. of inher
from common objects etc.

Use of shared libraries

Compiled code can be grouped in libraries. Static libraries contain code that is linked direct
executable file. Shared libraries on the other hand keep the code outside the executable pr
loading time the Operating System loads the shared library in memory and bind its adresse
application code.

A shared library can also be ‘loaded on-demand’, i.e. the executable explicitly loads and bir
code using the Operating System API: this is the method used by Lizard to load and execu
code. While loading a shared library is trivial, to execute the user code is a bit more tricky, ¢
program needs an ‘entry point’ to start from (this phase is called ‘symbol lookup’ in the jarg:
Lizard uses a very simple approach to solve this program:

® the user codewust contain a function nametdl t .
® such functiormust have C-linkage (to avoid problems with C++ symbol’'s mangling).

The following C++ code shows this in practice:

extern "C'
voi d* dolt( |H stoManager* hm | Nt upl eManager* ntm | Vect or Manager* vm)

std::cout << "Hello world!" << std::endl

}
}

If such function exists with the proper C-linkage, Ahel yzer will just load the library, look the
function up and execute it. Since there’s no limit of what the user puts in the body of the fur
virtually any computation can be carries out in this way.

Building a shared library

Every compiler has its own way of building shared libraries. For instance in order to make ¢
library using g++ the following Python command could be used:

# Ask the conpiler to create a shared library
shel | ("g++ -fpic -shared -1dl -rdynamnm c nyCode. cpp -0 myCode. so")

This way of working becomes cumbersome as soon as more compiler flags are needed, sc
ususally rely on more powerful tools such as gmake or full-fledged configuration managers



software release tools). In the following of this chapter, examples will rely on the use of gmi
via the Python’shel | function, any other software building tool could be used instead.

Interaction between Lizard and the user code
Loading and executing user code from a shared library is straightforward, but it's useless u
code can ‘communicate’ with Lizard. The way the two entities communicate is usually defin
‘protocol’. Common sense would require that such protocol is complete enough not to cons
users’ capabilities, yet as simple as possible to enhance ease-of-use.
The approach taken in Lizard is to tailor the protocol around the typical use-cases physicist
their day-to-day analysis. The basic idea is that the user code shares the set ohhizgmids (
seethe section called " Components in Lizafdf a more precise definition). In this way it's
possible to implement a sort of ‘round-trip analysis’ such as:
Procedure 9.0. round-trip analysis
1. Load or create the input data in Lizard, e.g.
a. load histograms from database
b. locate ntuples in database
c. create vectors of unbinned data
2. Execute user code
a. access input data vianager s
b. create output data vinager s

3. Examine output data in Lizard

The ‘protocol’ is reflected in the signature of et function which takes three arguments,
respectively thei st ogr amivanager , theNt upl eManager and thevect or Manager pointers.

extern "C'
voi d* dolt( | H stoManager* hm | Nt upl eManager* ntm | Vector Manager* vm)

/1 EMPTY

}
}

Making a shared library visible to programs

The most flexible way to use shared libraries is to rely on the operating system capability tc
them up using a well defined environment variable. On Linux and Solaris , such variable is
LD LI BRARY_PATH, thus to be able to load shared libraries in Lizard the user has update that
variablebefore starting Lizard. For instance in order to add the current directory to the path t
search libraries for, use the following Unix commands (respectively for csh flavor and Bouri



flavor shells):

setenv LD LI BRARY_PATH $PWD: ${LD_LI BRARY_PATH oOf

export LD LI BRARY_PATH=' pwd’ : $LD_LI BRARY_PATH

Some Anal yzer examples

The simplest example

This example shows how to write, compile and execute some very simple user code that cc
the factorial of a number. The minimal C++ code required would be something like this:

#i nclude <Interfaces/|H stoManager. h>
#i ncl ude <Interfaces/I| N upl eManager. h>
#i ncl ude <Interfaces/I Vect or Manager. h>

extern "C'

voi d* dolt( |H stoManager* hm | Nt upl eManager* ntm | Vect or Manager* vm)
{

int result=1,i;
for (i=1;i<6;i++)
result=resul t*i;
std::cout << "Factorial of 6 is " << result << std::endl;

}
}

To compile such code on Linux (assuming it's saved in a file nasvedl yzer 0. cpp, the
compiler is explicitly called via thehel I Python’s function:

:-) shell ("g++ -1 $LHCXX REL_DI R/'include -fpic -shared -1dl -rdynam ¢ nyAnal yzerO
0

(theo return value means the compilation was successful). To execute the user code it's ne
to create amnal yzer instance and then call ittsal yze method:

:-) an=Anal yzer ()

:-) an.analyze ("myAnal yzer0.so", hmntmvm
Factorial of 6 is 120

:-)

Notice how theanal yze method requires the name of the shared library and the list of the Li:
managers.

Structuring user code and compiling via gmake

To write the whole user code in a single ‘C function’ not the most appropriate way to structt
Our suggestion is to keep the ‘entry-point’ function as simple as possible and to define a ne
for the analyzer. One way to define such class which is very effective is to give it three maii
methods: one that carries out the bulk of the computation, one which is executed before ste
computation and one that is executed once the computation is over. This fits pretty well wit|
standard to-do list of a physicist doing analysis:



Procedure9.1. Typical analysis program
1. Book histograms, create vectors or open ntuples
2. Perform the analysis
3. Clean up the output data

An example of such class could be something like that:

#i f ndef | NCLUDED_MYANALYZER1_H
#define | NCLUDED_MYANALYZER1_H

cl ass nyAnal yzer

{
public:

/1l Construct/destruct</para>
<par a>

nyAnal yzer (
~nmyAnal yzer (
/1 Met hods

bool pr eExecut e (
bool post Execute (
voi d dol t (

b
#endi f // #ifndef | NCLUDED MYANALYZERL H

— ~—

This code is placed in a header file, then included in the user code. Assuming the file is nar
myAnal yzer 1. h, the corresponding coderigAnal yzer 1. cpp could be something like this:

#i ncl ude "nyAnal yzer1. h"

#i nclude <Interfaces/I|H stoManager. h>
#i nclude <Interfaces/I| N upl eManager. h>
#i ncl ude <Interfaces/I| Vect or Manager . h>

extern "C'

voi d* dolt( |H stoManager* hm | Nt upl eManager* ntm | Vect or Manager* vm)

{
/1 Creating an anal yzer instance
nyAnal yzer a ;
/1 Call the pre-execution nethod
a. preExecute();
/1 Do conputation
a.dolt();
/1 Call the post-execution nethod
a. post Execute() ;

}

}

nmyAnal yzer:: nyAnal yzer () {
}
nyAnal yzer: : ~nyAnal yzer () {
}

bool nyAnal yzer::prekExecute( ) {



}

bool nyAnal yzer:: post Execute( ) {
}

voi d nyAnal yzer::dolt() {
int result=1,i;
for (i=1;i<6;i++)
result=resul t*i;
std::cout << "Factorial of 6 is " << result << std::endl;

Notice how thedol t function becomes extremely general and somehow independent from tt
analysis code, which would rather be placed imthm@al yzer class. To compile the code this ti
we’ll use gmake.

The gmake requires a ‘makefile’ containing the directives to create the shared library. If no

explicitly specified, gmake will look for a default makefile nan@dmakef i | e. This is an
example of such makefile:

# Linux specific!

CXX = g++

LDSHARED = $(CXX) -shared -1dl -rdynamc
CCSHARED = -fpic

# User code filenane: default is myAnal yzer. cpp
i fndef PROG

PROG = myAnal yzer.cpp

endi f

HDRS ${ PROG. . cpp=. h}

oBJS
SHR_OBJS

${ PROG . cpp=. o}
${ PROG: . cpp=. so}

I NCLUDE  += - | ${LHCXX_REL_DI R}/ i ncl ude

. SUFFI XES: .cpp .h
. PHONY: all

all: ${SHR OBJS}
$( HDRS)

${SHR OBJS} : ${OBIS}
$(LDSHARED) ${OBJS} -0 ${SHR OBJS}

${OBIS} : $(PROG $(HDRS)
@cho ++++++++++ conpiling $<
$(CXX) $(CCSHARED) -w -pipe -c $< $(INCLUDE) -0 $@

The discussion of makefiles’ structure is beyond the scope of this document: in the Lizard
exanpl es directory users will find an appropriate makefile to run this examples. Lizard defin
make() shortcut that is equivalent el | (" gmake") . The shortcut accepts a string argument
which is passed over to gmake (e.g. to specify a target or the value of a variable). Now we
execute the same code using this Python script:

# Create anal yzer



an=Anal yzer ()

# Conpil e the code

make(" PROG=nyAnal yzer 1. cpp")

# Execute it

an. anal yze ("myAnal yzer1l.so", hmntmvm
# Cl ean-up

del an

Interacting with the H st oManager component

The first step in making user code interact with Lizard is to understand how to use the
H st oManager component from within the C++ code.

As a first example lets’ assume the task is to book and fill a histogram in the C++ code and
how it looks like from Lizard. With respect to the code used in the previous section, the cha
are:

1. Declare an histogram pointer as private member ahtheal i zer class (so that it can be
accessed by the class methods)

2. Modify the pr eExecut e method to book the histogram

3. Modify thedol t method to fill it

The class declaration becomes:

#i f ndef | NCLUDED_MYANALYZER2_H
#defi ne | NCLUDED_MYANALYZER2_H

cl ass nyAnal yzer

public:
/1 Construct/destruct/copy
nyAnal yzer O);
virtual ~nyAnalyzer ();
/1 Met hods
/1 preExecute() takes the H stoManager handl e as paraneter
bool pr eExecut e ( I H stoManager* hnj;
bool post Execute ();
voi d dol t O;
private:

/1 A pointer to a histogram
| H st ogramlD* hi;

b
#endi f // #ifndef | NCLUDED_MYANALYZER2_H

while corresponding implementation is:

#i ncl ude <stdlib. h>

#i nclude <Interfaces/I|H stoManager. h>
#i nclude <Interfaces/I|H stogramlD. h>
#i nclude <Interfaces/| N upl eManager. h>
#i ncl ude <Interfaces/| Vect or Manager . h>
#i ncl ude "nmyAnal yzer2. h"

extern "C'

{



voi d* dolt( |H stoManager* hm | Nt upl eManager* ntm | Vect or Manager* vm)
{

/1 Creating an anal yzer instance
nyAnal yzer a ;
/1 Call the pre-execution nethod
if (a.prekxecute(hn)) {
/1 Do conputation
a.dolt();
/1 Call the post-execution nethod
a. post Execute();
}
}
}

nyAnal yzer::nyAnalyzer() : hl (0) {
}

nyAnal yzer:: ~nmyAnal yzer () {

}

/1 book the histogram before using it

bool nyAnal yzer::preExecute( |Hi stoManager* hm) {
hl = hm >createlD( "10", "randoni, 50, 0., 1. );
return hl !'= 0;

}

bool nyAnal yzer:: post Execute( ) {

}

/1 Fill the histogramw th random values from|[0,1] uniformdistribution
voi d nyAnal yzer::dolt() {

int i;
for (i=0;i<100;i++) {
doubl e val = (static_cast<doubl e>(rand()))/ RAND NAX;
hi->fill (val);
}
}

Now a small Python script to execute the code and show the resulting histogram

# Create an anal yzer

an=Anal yzer ()
# Conpile the user code

rc = make(" PROG=myAnal yzer2. cpp")

if (rc == 0) :

# Execute user code

an. anal yze ("nyAnal yzer2.so",hmntmvm
# Retrieve histogram handl e using the ID
h10=hmretri eveH st 01D( 10)

# Pl ot histogram using shortcut
v1=hpl ot (h10)

# Del ete anal yzer
del an

Notice how the histogram is retrieved in Lizard usingridte i eveHi st 01D() method of the
H st oManager . The resulting output will be something likegure 9.14

Figure9.14. Histogram created in C++ and visualized in Lizard



i [ 10
B _ Entries 100
hdean 04583555
B RrAS 0290601
COverflow 1]
T P Underflow .
4 _
7 H L
|:| 1 1 | | 1 1 1 1 1 1 | 1 1 1 1 1 1
] ne 0.4 N3] (IR 1
¥ Coordinate : 0805115 Y Coordinate : B.43136

Another way to obtain the same result would be to create the histogram in Lizard and then
it in thepr eExecut e method. The Python script must be modified accordingly:

# Create an anal yzer

an=Anal yzer ()

# Compil e the user code

rc = nake(" PROG=nyAnal yzer 2. cpp")

if (rc ==0) :

# Create the histogramso that can be retrieved later in C++
h10=hm cr eat e1D( 10, " Randont', 50, 0., 1.)
# Execute user code
an. anal yze ("nyAnal yzer2.so",hmntmvm
# Pl ot histogram using shortcut
v1=hpl ot (h10)

# Del ete anal yzer
del an

The impact on the C++ code is just the modification optheExecut e method so to retrieve an
existing histogram rather than create it:



/1 book the histogram before using it

bool nyAnal yzer::preExecute( |Hi stoManager* hm) {
hl = hm>retrieveHi stolD( "10");
return hl !'= 0;

}

Ntuple analysisusing the Anal yzer

I ntroduction

As described ilChapter 6Lizard provides methods to scan,plot and project ntuple attributes
C++ cuts and expressions. If more complex ntuple analysis must be carried out, all Interact
Analysis tools provide some kind of ‘gateway’ to execute user code written in the programn
language of choice. For instance PAW allowed to execute Fortran programs (via COMIS) o
trigger the execution of a Fortran subroutine for each ntuple entryNasLioor. The Lizard
approach is to use thaal yzer for the same purpose: execute user code that goes through tl
ntuple, performs actions on the data and share the outcome (e.g. histograms) with the tool.
main difference with respect to the above-mentiamed oor solution is that the user code
manages the so called ‘ntuple loop’, i.e. the iteration over the ntuple. This gives the user m
flexibility at a modest cost, since the looping code is very simple and can be automatically
generated on his behalf. The current version of Lizard does not support such automatic ger
yet, but the additional code is so simple that cut-and-paste from examples is largely enougl

The ntuple component(s) of Lizard are structured as a ‘layered system’ so to avoid direct ct
between high level functionalities (as those describé&hampter § and low-level storage back-el
(such as Objectivity/DB). The relation among those layers are depidtéglire 9.15

Figure 9.15. Relations among ntuple components



1

High level interface
&1DA_Miuple q

g for the Lizard user
(e.g. project,scan)

1
Low level interface
MtupleTa;
P d for C++code (e.qg.
iteration, binding)
1 1
MtupleTag_HepExp MTupleTag_Hbook
1 1
HepODBEMS CHEook
1
Ohjectivitw/'DB HEOOK,

Key conceptsof Lizard ntupleanalysisin C++

The ‘low-level’ programming interface to ntuples is not implemented in terms of Abstract
Interfaces (yet). This means theal yzer code is less portable, although the Lizard implement
is quite general and supports multiple backends for storage (so far Objectivity/DB and HBC

The four basic concepts of any ntuple analysis code in Lizard are:

® Ntuples are looked up viafactory, e.g.

/1 Finding ntuple
i Ntuple = factory->fi ndOneC( "TagCol | ectionl" );

® |teration is done via thet upl e object, e.qg.

or( i Ntuple->begin(); !iNuple->isend(); iNuple->next() ) {
/

f
/'l User code
}

® Ntuple attributes are retrieved \faant i t y objects. Quantities behave as standard C++-
variables, e.g.

/1l Quantity to bind pT attribute in ntuple



Quanti t y<doubl e> pt;
® Quantites are explicitly bound to ntuple variables, e.qg.
i Nt upl e->bind( "pt", pt )

From then on, whenever the program accegihet i t y instance, its value reflects the va
of the attribute in the current ntuple row, so it can be used as a cut expression or to fil

histogram:
if (pT > 5.0)
hil->fill (pt);

An example of Lizard ntuple analysisin C++
The user code

The following example is based on the same ntuples ugelapter 6 The code locates the ntug
namedragCol | ecti on1, binds two attributes (out of four) and project one of those attributes
the other one for the cut. The general structure of the code is very close to what washesed |
section called " Interacting with tiest oManager component:"a header file with the class
declaration and a source file containing the class implementation aathtlyeer "entry-point”.

First the header file. The interesting part is certainly the declaration o4t e member variables

#i f ndef | NCLUDED_MYANALYZER3_H
#define | NCLUDED_MYANALYZER3_H

#i ncl ude <Nt upl eTag/ Li zar dNTupl eFact ory_HepExp. h>
#i nclude "Nt upl eTag/ Li zardQuantity. h"

USE_LI ZARD_NAMESPACE

/1 Forward decl arations
cl ass | H st oManager;

cl ass | Nt upl eManager;

cl ass | Vect or Manager ;

cl ass | Hi st ogranilD;

cl ass nmyAnal yzer

public: // Interface
/1 Construct/destruct

nmyAnal yzer 0);

virtual ~nyAnalyzer ();

/1 Met hods

bool pr eExecut e ( I H stoManager* hm);

voi d dol t ( I Ntupl eManager * ntm);
private:

bool bi nd ( NTuple* aNtp );
private:

/1 Hi stogram poi nter
| H st ogramlD *hi;
/1 Anal yzed nTupl e



NTupl e* i Nt upl e;

/1 Attributes to bind
Quant i t y<doubl e> pt;
Quant i t y<doubl e> phi ;

s
#endi f // #ifndef | NCLUDED MYANALYZER3 H

There we find a histogram pointer (initialized with an histogram ipthexecut e() method), a
pointer to arNTupl e instance and twQuant i t y objects that will contain the ntuple’s attribupes
andpt . Quantities are template classes having a basic C++ type as argument:

/1 Quantity bound to a double attribute
Quanti t y<doubl e> pt;

/1 Quantity bound to a float attribute
Quantity<fl oat> px;

/1 Quantity bound to a int attribute
Quantity<int> channel

Lizard will take care of checking the consistency between the Quantity type and the type st
the ntuple. From the user point of view Quantities behave exactly as the type in the argume
this is perfectly legal:

/1 Print squared nonmentum
st d: : cout <<pt *pt <<st d: : endl

Although the source code is listed in its entirety, the focus is mainly on two medhodsind
bi nd:

#i ncl ude "nyAnal yzer 3. h"

#i nclude <Interfaces/|H stoManager. h>

#i ncl ude <l nterfaces/|H stogramlD. h>

#i nclude <Interfaces/I|H stogranmD. h>

#i ncl ude <Nt upl eTag/ Li zardTransacti onControl |l er. h>

voi d nyAnal yzer::dolt( | N upleManager * ntm) ({

/1 Creating a factory for HepExpl orabl e
/1 NTupl eFactory *factory = createNTupl eFactory();
NTupl eFactory *factory = new NTupl eFactory HepExp
/1 Starting Transaction
factory->get TransCont (). start Read();
/1 Finding ntuple
i NNuple = factory->findOneC( "TagCol | ectionl" );
if( iNtuple !'=0) {

/1 Check binding is successful

if( bind( iNtuple )) {

for( iNtuple->begin(); !'iNuple->i send(); iNuple->next() ) {

/1 A cut
if (phi > 0)
hi->fill (pt);
st d: : cout <<pt *pt <<st d: : endl
} else
std::cout << "Bind error" << std::endl

}
el se

std::cout << "Unable to open TagCollectionl" << std::endl



/1 Committing Transaction
factory->get TransCont ().commt();
del ete factory;

}

bool nyAnal yzer::bind( NTuple* aNtp ) {
return aNtp->bind( "pt", pt ) && aNtp->bind( "phi", phi );
}

nyAnal yzer:: nyAnal yzer() : iNuple(0) {
}

myAnal yzer:: ~myAnal yzer () {
del ete i Ntuple;
}

bool nyAnal yzer::preExecute( |Hi stoManager* hm) {
/1 Book histogram
hl = hm >createlD( "10", "pt"
return hl !'= 0;

}

extern "C'

, 50, 0., 50);

voi d* dolt( |H stoManager* hm | Nt upl eManager* ntm | Vect or Manager* vm)
{

/1 Creating nyAnal yzer
nyAnal yzer a ;
/1 1f pre execute successful, loop and fill
if (a.prekxecute( hm)) {
a.dolt( ntm);
a. post Execute();

}
}
}

Binding quantitiesto attributes

Thebi nd method tries to bind the two quantities to their counterparts among the ntuple attri
If all bindings are successful, the method returns a true valueni hiienethod on the ntuple
accepts two argument, the name of the attribute (as a string)@adtat y. While the name of tf
attribute must match the names stored in the ntuple, the name of the Quantity is entirely arl
(although using the samrd certainly improves code readability).

/1 First argunent is nanme in the ntuple, second is the related Quantity
i Nt upl e->bind( "pt", pt );

Iterating over an ntuplein thedol t () method

Thedol t first looks up the ntuple via a factory:

/1 NTupl eFactory *factory = createNTupl eFactory();
NTupl eFactory *factory = new NTupl eFactory_HepExp;
/1 Starting Transaction

factory->get TransCont (). start Read();

/1 Finding ntuple

i Ntuple = factory->fi ndOneC( "TagCol | ectionl" );



If this step is successful, the code tries to bind the attributes to the class Quantities by invol
private methodi nd() (seethe section called "Binding quantities to attributiEs"details).

/1 Check binding is successful
if( bind( iNtuple )) {
} else
std::cout << "Bind error" << std::endl;

On successful binding, the code iterates over the ntuple ussrgstatement:

for( iNtuple->begin(); !'iNuple->isEnd(); iNuple->next() ) {
}

Every cycle in the or loop brings in memory an ntuple row, i.e. the boQueht i ti es are
updated (notice how the other attributes are just ignored, saving memory transfers). Using
guantities is now possible to apply a cut and fill the histogram previously booked:

/1 Cut on non-zero phi val ues

if (phi > 0)
/1 Fill the pT histogram
hil->fill (pt);

Transaction management

The code in the previous example contains calls to transaction management methods

(get TransCont (). start Read() andget TransCont (). comit () respectively). Transaction
management is common when working with databases (as in our example using Objectivity
Indeed most databases wouldn’t do any operation if no transaction is open. Since other
(non-database based) back-ends may not have such concept, Lizard will provide empty tra
managers so that the code can easily be ported without changes.

Writing ntuplesusing the Anal yzer
Key concepts

Although writing an ntuple is less frequent than reading it back, Lixatidyzer can be used for
this purpose as well. The concepts involved in ntuple creation can be summarized as follow

® Ntuples are created viafactory, e.qg.

/1l Create a HepExpl orabl e-type nTuple factory

NTupl eFact ory HepExp *factory = new NTupl eFact ory_ HepExp;
/] Create the nTuple via the factory and open for witing
NTupl e* ntuple = factory->createC( aNTupl eNane );

® Ntuple attributes are created Qaant i t y objects. Quantities behave as standard C++ ty



variables, e.g.

/1 Quantity to bind pT attribute in ntuple

Quanti t y<doubl e> pt;

/] Declare the ntuple attribute and bind it to the quantity
nt upl e- >addAndBi nd( "phi ", phi )

® Once the attributes for a row are properly initialized, a new row is inserted by calling tl
NTupl e: : addRow() method.

for( eventNo = 0; eventNo < 1000; eventNo++ ) {
pt = 0;
/1 Values of attributes are prepared; store themto the nTuple
nt upl e- >addRow( ) ;

}

Theuser code

The example will create an ntuple having the same structure of those we saw so far (four a
event No ,pt ,phi ,Energy ), the data being just random samples drawn using CLHEP randon
generators. The header file is very simple, since no private member variables are allocated

#i f ndef | NCLUDED_MYANALYZER4_H
#defi ne | NCLUDED_MYANALYZER4_H

/I #i ncl ude <Nt upl eTag/ Li zar dNTupl eFactory. h>
#i ncl ude <Nt upl eTag/ Li zar dNTupl eFact ory_HepExp. h>
#i nclude "Nt upl eTag/ Li zardQuantity. h"

USE_LI ZARD_NAMESPACE

/1 Forward decl arations
cl ass | H st oManager;

cl ass nyAnal yzer

public: // Interface
/1 Construct/destruct
nyAnal yzer O);
virtual ~nyAnalyzer ();
/1 Met hods
voi d dol t ( I Ntupl eManager * ntm);

b
#endif // #ifndef | NCLUDED MYANALYZER4 H

Apart from the implementation of the "entry-point”, the C++ code is all grouped éottih¢)
method:

#i ncl ude <math. h>

#i ncl ude <CLHEP/ Randoni Randomi ze. h>

#i ncl ude <CLHEP/ Uni t s/ Physi cal Const ants. h>
#i ncl ude "nyAnal yzer 3. h"

#i nclude <Interfaces/|H stoManager. h>



#i nclude <Interfaces/I|H stogramlD. h>
#i nclude <Interfaces/I|H stogran2D. h>
#i ncl ude <Nt upl eTag/ Li zardTransacti onController. h>

extern "C'
voi d* dolt( |H stoManager* hm | Nt upl eManager* ntm | Vector Manager* vm)

/1 Creating myAnal yzer
nyAnal yzer a ;
a.dolt( ntm);

}
}

nyAnal yzer::nyAnal yzer() {
nyAnal yzer:: ~nmyAnal yzer () {
}

voi d nyAnal yzer::dolt( | N upleManager * ntm) {
string aNTupl eNane = "BrandNewTupl e";
/1 Create a HepExpl orabl e-type nTuple factory
NTupl eFact ory_HepExp *factory = new NTupl eFact ory_HepExp;
/] Start a wite transaction
factory->get TransCont (). start Update();
/1 Renove old nTuple if present
i f( factory->renoveOne( aNTupl eNane ) )
std::cout << "Ad ntuple \"" << aNTupl eNanme << "\" renopved." << std::endl
/1l Create the nTuple via the factory and open for writing
NTupl e* ntuple = factory->createC( aNTupl eNane );
/1 Check if successful
if( ntuple '=10)
/1 Declare quantities which reflects attributes
Quanti ty<l ong> event No;
Quant i ty<doubl e> pt;
Quant i ty<doubl e> phi;
Quant i t y<doubl e> Ener gy;
/1 Add and bind new attributes
i f( ( ntuple->addAndBi nd( "eventNo", eventNo ) &&
nt upl e- >addAndBi nd( "pt", pt ) &&
nt upl e- >addAndBi nd( "phi", phi ) &&
nt upl e- >addAndBi nd( "Energy", Energy ) ) ) {
/1 Wite 1000 rows
for( eventNo = 0; eventNo < 1000; eventNo++ ) {
pt = RandExponential::shoot( 1. / 0.17 );
/1 1nvert gaussian pseudo-rapidity
doubl e theta = 2. * atan( exp( -RandGauss::shoot( 3.0, 1.2 ) ) );
/1 Flat phi distribution
phi = RandFl at::shoot ( twopi );
/1 Al particles nake a cluster, no snearing
Energy = sqgrt( ( pt / sin( theta) ) *
( pt / sin( theta) ) + ( .13956 ) * ( .13956 ) );
/1 Values of attributes are prepared; store themto the nTuple
nt upl e- >addRow() ;

std::cout << eventNo << " rows are generated successfully for
std::cout << aNTupl eNane << std::endl

} else
std::cout << "Error: unable to add attribute." << std::endl

del ete ntupl e;

} else {
std::cout << "Error: nTuple \"" << aNTupl eNane;
std::cout << "\" cannot be created" << std::endl



/1 commt changes
factory->get TransCont ().commt();
del ete factory;

}

After retriebving thefactory the code starts an update transaction and tries to locate a ntuple
the same name. If so, it removes the old ntuple before creating the new one (this means th
behaviour is not to overwrite, to avoid losing data by mistake). The code then creates a nev
and declares local quantities that will store the values to put in the ntuple:

/1 Create the nTuple via the factory and open for witing
NTupl e* ntuple = factory->createC( aNTupl eNane );

/1 Declare quantities which reflects attributes

Quanti ty<l ong> event No;

Quant i ty<doubl e> pt;

Quant i ty<doubl e> phi;

Quant i t y<doubl e> Ener gy;

The next step is to declare this new attributes in the ntuple and to bind them to the allocate
guantities: this is done using tNeupl e: : addAndBi nd() method:

if ( ( ntuple->addAndBi nd( "eventNo", eventNo ) &&
nt upl e- >addAndBi nd( "pt", pt ) &&
nt upl e- >addAndBi nd( "phi", phi ) &&
nt upl e- >addAndBi nd( "Energy", Energy ) ) )

Notice how the calls taddAndBi nd() are chained so that if one fails the test evaluatesl toe.
AT this point an empty ntuple with all its attributes has been created, so it's possible to fill it
rows of data. All quantities are assigned the proper value and then theadafda() make the
current set of values a row in the ntuple.

/1 Wite 1000 rows
for( eventNo = 0; eventNo < 1000; event No++ ) {
pt = RandExponential::shoot( 1. / 0.17 );
/1 1nvert gaussian pseudo-rapidity
doubl e theta = 2. * atan( exp( -RandGauss::shoot( 3.0, 1.2 ) ) );
/1 Flat phi distribution
phi = RandFl at::shoot ( twopi );
/1 Al particles nmake a cluster, no snearing
Energy = sqgrt( ( pt / sin( theta) ) *
pt / sin( theta) ) + ( .13956 ) * ( .13956 ) );
/1 Values of attributes are prepared; store themto the nTuple
nt upl e- >addRow( ) ;

This is a small Python script which could be used to execute the code and check the new n
been really created:

# Create an anal yzer

an=Anal yzer ()

# Conpile the user code

rc = make(" PROG=myAnal yzer 4. cpp")
if (rc == 0) :



# Execute user code
an. anal yze ("myAnal yzer4.so",hmntmvm

# Del ete anal yzer
del an

# List ntuples
ntmlistNuples ()

The output of the last command should show the new ntuple beside the old ones:

:-) ntmlistNuples ()
Expl or abl es present:

TagCol | ecti onl
TagCol | ecti on2
TagCol | ecti on3
TagCol | ecti on4d
Br andNewTupl e

Fitting using the Anal yzer
Introduction

TheFi tter components allows users to compute best fit of data samples against distributio
asGaussian, Polynomial (N), Exponential (or additive combinations of those elementary model
Although this covers a large fraction of day-to-day analysis, Lizard allows users to fit data tc
arbitrary function, via thenal yzer component. The rest of the section will provide more deta
information on how to do this.

Key concepts of using the Anal yzer for fitting

The ‘low-level’ programming interface to fitting is (partially) defined in terms of Abstract
Interfaces (although not yet AIDA ones). One implementation of such interfacesia t{tatting
and Minimization Library) package. FML in turns relies on Gemini, thus making possible to
the minimization engine among different implementations (currently NAG C and Minuit). Th
relations among those packages are depictédjure 9.16

Figure 9.16. Relations among fitting components



1

; High level interface
IFitter q

for the Lizard user
(e.q. fit with G,E,P{n))

1
AlDA_FrL
1
Lowe level interface
FhriL
for C++code (..
user model function)
1
Gemini
/ \
Mag C Minimizer kit (Fortran)

Bibliography and Useful Links

Books

[Gamma95Erich Gamma, Richard Helm, Ralph Johnson, and John VlisSiogyright © 1995.
0-201-63361-2Addison-Wesley Publishing Compariyesign Patterns. Elements of Reusable
Object-Oriented Software.

[Dalheimer99]Matthias Kalle DalheimeiCopyright © 19991-56592-588-20'Reilly.
Programming with Qt. Writing Portable GUI applications on UNIX and Win32.

Web pages
[Qt Home] Qt Home Page.
[Lizard Home] Lizard Home Page .

[W3CMathHome] W3C Math Home Page .



