Summary of the Parallel
Session: “Core Software”

Glacomo Govi IT/DB

CHEP'04



Institutions/projects

CERN (12)

FNAL (4)

LBNL (4)

SLAC (3)

GSI (2)

LAL (2)

Northeastern University (2)
Maryland University (2)
DESY (2)

Cornell University (1)
Université de Grenoble (1)
Universidade Lisboa (1)
INFN (1)

LCG (8)
ATLAS (4)
ROOT (3)
CMS (3)
GSI

ALICE
FNAL Accelerator
lceCube
Pierre Auger
Cleo

Babar

EDG



Topics

Generic Frameworks

Language interoperability/extensions
Analysis tools

Data processing frameworks

Persistency

Math Libraries

Infrastructure/procedures for development



Generic Frameworks

Abstract decomposition of application modules
o Definition of components, protocols

o Assembly infrastructure

* Properties

 Dynamic/Static configuration

— Target to stream data processing
— Java based

— Target to any C++ composite application
— Provide basic framework services
— Context based wiring



Language
Interoperability/extensions

Object dictionary
Generic programming
Python scripting appeal
Bindings

— C++ reflection
— Implemented for very general usage

— Python/C++ binding
— Based on LCG/CINT dictionaries

AOP programming



Analysis tools

Applications for interactive analysis and data visualization
* API universality

 Languages/platforms

 Web interfaces

* Interactive tools

— Defines a general API
— Implementation available for C++,Java,Python

— Assembly of external tools

— Uses native Graphic packages on several platforms
— OpenPaw



Data processing frameworks

- Tasks: reconstruction, simulation, analysis
- External dependencies
- Analysis on distributed environment

Generic application

- Modular structure, configurable
- External algorithms

Experiment specific offline frameworks (LHC)

- Based on Gaudi
- Includes all ALICE offline software

- Composite framework based on plug-in modules



Data processing frameworks

Experiment specific offline frameworks (non LHC)
* Discrete detectors with large sensible surface

e Laboratories in remote |location

e Large time structure of events

o Algorithms evolving rapidly

— Used in both online and offline
— Multi path processing
— Algorithm choice at run time

— C++

— Handles access to event data and detector data
— Provides geometry utilities

— Allow plug-in of external algorithms



Persistency

Frameworks for data store
» Persistency technologies, evolution
* Transient to persistent shape

e Data distribution

— Targeted for simulation and reconstruction
— Java, C++, F77 API

— Extendable data model

— Proprietary I/O format

— LCG Persistency framework

— API neutral on storage technology

— Support for file and metadata catalogues
— Integrated in three LHC experiments



Persistency

Root I/O based technologies

 TTree feature enhancements

e Data I/O interoperability

e Access to data in root files from pure Java programs

— Large file support
— Optimization/ enhancement of queries
— Access to RDBMS from TTree

— XML exchange format between applications

- Support for fast reading from root files

— Query optimization



Persistency

Frameworks for meta data and detector data

Versioning

Metadata/ Data selection
Architecture

Multi-language/multi platform access
Concurrent storage access
Geographic distribution

— Focus on data analysis handling

— Java based three-tiers architecture
— Data set bookkeeping catalogue/Tag collector

— Stores pure detector technical data
— To be correlated with slow control and condition data
— Previously MySQL, work on going on Oracle



Persistency

Frameworks for condition data

o Target: data varying with time (calibration,alignements)
« Storage technologies

 API and Schema definition

e Data handling

— Common solution for LHC experiments
— Unified API for multi-technology backends
— Integration with POOL persistency foreseen

— Based on MySQL db

— Based on Objectivity



Math libraries

Packages with Math functions, operations, fitting tools,
algorithms

- Target: simulation, reconstruction, analysis

- CernLib replacement

- Re-implement some algorithm with OO design
- Minimization packages

Inventory of HEP Math components from GSL,CernLib
Validate and integrated C++ components from GSL, CLHEP, Root
Minuit re-implemented in C++

Focused on Fitting and Minimization



Infrastructure/ procedures for
software development

Guidelines, Policies, Quality assurance
Modeling requirements

Policy-based infrastructure

Testing tools

Automated validation

Definition of Models for User, GUI Designer and developer
Key principles for designing

Definition of policies for testing, code versioning, other infrastructure
- Test framework based on Oval, X-Unit family, QmTest
- QA based on testing, metrics, policies compliance



Infrastructure/ procedures for
software development

Infrastructure for developing/building/maintain software libraries
- Source organization

- Autotools

- Code repository, Versioning

- Usage patterns

- Code optimization

- Tools

Improved source organization
Use autotools

- SCRAM and CMT-based configuration/building
Effort in providing better off-site deployment

Uses autotools, CVS, rpm’s

Non-intrusive tool for profiling
Memory leaks, performance



Observations

Developments based on generic frameworks,
with high level of abstraction

Broad Introduction of generic API’s to shield
user from technology-related details

C++ still main language, Java well positioned for
analysis tools, Python seen as easy-to-use
language for tools and user applications

Some extensions of the used languages
Implemented or explored

Interoperability among languages extended.



Observations

Attempts to standardize analysis tools

Root technology largely dominant, but often
used through a framework to drive the specific
experiment use cases

Offline frameworks mature for most of the
functionality required

Consolidation in a few areas desirable
Distributed analysis still area under big evolution



Observations

Common persistency solution adopted by three
LHC experiments and validated in production
activities

Root technology for Event data

RDBMS considered for metadata, condition
data.

Technologies seen as possibly changing over
time.

Attempt to unify effort still possible for condition
database



Observations

Infrastructure for large, geographically
distributed developments (LCG, DataGrid)
validated by the success of the projects

More consolidations than large-scale
developments

Strategies based on integration, focus on
flexibility and reliability

Atmosphere quiet, few questions and
discussions...



