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Who am I?
• Long-time contributor to the Open Source community

– Volume 1 of comp.sources.unix even, which makes me old
• Background as a UI designer and big early advocate of 

the X Window System - wrote “awm”, the first reparenting 
Window Manager, various toolkits and widgets, etc.

• Long-suffering administrator at U.C. Berkeley
• Co-founder of the FreeBSD project and benevolent 

dictator of it for abount 8 years
• Over 20 years of Unix development, but comparatively 

new to Apple and the Macintosh platform
– Only came to Apple once it had a real OS



Why UNIX was the right technology
• Highly “composeable” as operating systems go

– It’s an onion, not a potato
• It gave us a huge amount of open source to leverage 

and this was critical to the implementation process
• Instant portability for a huge number of important 

applications (and important users) in SciTech and other 
fields

• Interoperability with *BSD, Linux, Solaris and other UNIX-
derivatives came almost for free



Why UNIX was the right technology
• Development community is active, innovative and has a 

strong and well-established track record on OS design
• Influential in decision making
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Mac OS X Users: 12 Million
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Applications: 12,000 Mac OS X Native
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Mac OS X is now the 
biggest desktop UNIX 
variant on the planet



Mac OS X 10.3
Panther, a quick overview
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BSD Kernel
• FreeBSD 4.8 based (networking, vfs, filesystems, etc)
• Unified Buffer Cache (different than FreeBSD’s)
• Clustered I/O performance enhancements
• Local File Systems

– hfs, ufs, iso9660, udf, fat, ntfs

• Network File Systems
– nfs, afp, smb, webDAV, ftpfs



BSD Networking
• Full IPv6 support
• L2TP/IPSec VPN client and server
• 802.1x wireless authentication (TLS, TTLS, LEAP, PEAP,...)
• Firewall based on ipfw
• Network Reachability APIs
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Mach Kernel
• Based on Mach 3
• VM, tasks, threads, scheduling and IPC
• Fine grain locking for SMP
• Support for > 4GB Physical memory
• [fairly] Light-weight threading model makes aggressive 

threading more practical
• Real-time scheduling
• Event driven application programming model (via Mach 

ports)
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IOKit
• Written in conservative C++
• OOP device family and instance model
• Support for user space drivers
• Dynamic plug and play
• Handles all device property information and provides 

convenient introspection via ioreg(1) and friends
• Sophisticated power management
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Commands and Libraries
• Standard commands and libraries from FreeBSD 4.8
• A full suite of scripting languages

– perl, tcl, python, ruby, php
• Every standard shell

– bash, csh, tcsh, zsh, etc
• Standard editors

– pico, vi, emacs (the only one you actually need)
• Standard C compiler suite

– gcc, g++, Objective-C [version 3.3]
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Open Directory
• Flexible plug-in architecture

– Supports legacy flat files
– Supports OpenLDAP
– Supports Active Directory

• Open Source
– http://developer.apple.com/darwin/

projects/opendirectory/



Security Server

• Full CDSA (Common Data Security 
Architecture) implementation

• Plugin-based authentication
• Implements keychains for easy access
• It’s not OpenSSL
• Open Source references:

– http://developer.apple.com/darwin/
projects/security/

– http://sourceforge.net/projects/cdsa/



Rendezvous

• Service registration
• Service discovery
• Easy ad-hoc networking via .local 

namespace
• Also available for FreeBSD, Solaris & 

Linux (and a number of misc devices)
• Open Source references:

– http://developer.apple.com/macosx/
rendezvous/
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2D Graphics:  Quartz
• PDF-based imaging model
• Leverages GPU
• CUPS “WYSIWYG” printing
• Python bindings

– CoreGraphics APIs
– QuickTime images
– PDF, RTF, HTML



3D Graphics:  OpenGL

11 10/29/04Apple Confidential

Industry Standard 
3D Technology

Keeping the world safe from DirectX



Apple Confidential

Mac OS X Architecture

User Interface

Application Frameworks

Graphics and Media

System Services

OS Foundation

Applications





Also supports X11
• Based on XFree86 4.4

• Implements X11R6.6

• Includes basic X apps e.g. xterm, xcalc, xedit, etc

• Hardware OpenGL rendering

• Native Aqua and X11 applications run side by side

• Or you can run it in Full Screen mode



Apple Confidential
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Most of the important ones...
• Microsoft Office
• Photoshop
• Quicken / Quickbooks
• Quark Xpress
• Macromedia Director and 

Macromedia Studio
• ... and many many more, either here 

or coming soon



The challenges of UNIX...



Challenge:  Authentication

Sorry, this is not a user information database:

nobody:*:-2:-2:Unprivileged User:/:/usr/bin/false
root:*:0:0:System Administrator:/var/root:/bin/sh
daemon:*:1:1:System Services:/var/root:/usr/bin/false
smmsp:*:25:25:Sendmail User:/private/etc/mail:/usr/bin/false
lp:*:26:26:Printing Services:/var/spool/cups:/usr/bin/false
postfix:*:27:27:Postfix User:/var/spool/postfix:/usr/bin/false
www:*:70:70:World Wide Web Server:/Library/WebServer:/usr/bin/false
mysql:*:74:74:MySQL Server:/var/empty:/usr/bin/false
sshd:*:75:75:sshd Privilege separation:/var/empty:/usr/bin/false



The present looks a lot more like this ...
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Challenge:  Authentication
• The traditional UNIX group model is obsolete
• The uid is obsolete and insufficient - prepare 

for the GUUID (and privacy concerns)
• Smart Cards (and their successors) are in the 

future
• Kerberos everywhere:  A good solution, but 

still some integration work to do



Challenge:  Authentication
• ACLs:  Easier to implement than to use
• ACL interoperabilty - fact or fiction?
• The resource fork is back!  POSIX 

Extended Attributes:
– A challenge for the command line
– A challenge for NFS and non-EA 

aware local File Systems



Challenge:  API Stability
• Telling people to just recompile their code is NOT 

an evolutionary API strategy:
– APIs need to be clearly classified (supported, 

unsupported, unstable, marked for death, etc) in 
header namespace and doc

– Shared library version numbers aren’t proving 
to be sufficient

– Current linker toolchain may not be sufficient 
either



Challenge:  API Stability

• Restricted Kernel APIs are essential:
– Developers like to poke into the innards, 

but this can strongly inhibit innovation
– “Just recompile” not even often an option 

in this application space
– Things like /dev/kmem are evil and should 

die (and will someday in Mac OS X)
• Proper kernel abstraction can help both the 

OS vendor and its 3rd party hackers



Challenge:  Administration
• Still too many weird configuration files and 

formats (~/Library/Preferences could be taken 
further)

• Service control and management is crude
• Remote administration and machine cluster 

administration still has a long way to go
• Logging / Auditing (for firefighting) are 

haphazard



Challenge:  UI + Applications
• The X Window System still sucks as a UI 

portability solution
– The X UI toolkit world is still balkanized
– Complex desktop apps can’t use it anyway

• High level APIs - Libc isn’t, but it’s the only 
common denominator we have (for now)

• “Scripting” languages (and Java) are one 
possible portability bridge



Challenge:  Hardware evolution

• Integer performance and clock rate increases are 
slowing down with die-shrinks and other issues

• Floating point performance is becoming a more 
significant battleground
– Comparatively little compiler tuning and hand-

optimization can have significant effects
– Continuous work on exploiting Altivec in 

progress at Apple
• GPUs are also becoming viable as general 

purpose computational engines



Challenge:  OSS community
• Apple has done a great job leveraging open source, but 

there are things we want to improve:
– More effective 2-way collaboration.  Not just “pull” but 

“push”
– Greater visibility into the OS dev process (particularly with 

bug reporting)
– More timely source drops which always match current OS 

and update version
– More “co-production” with OSS community, where and 

when it matches their mission



Tiger - A selective preview

Some UNIX challenges we are addressing...



64-Bit Features
• 64-bit addressing for user tasks

– Up to 16 exabytes of addressable virtual 
memory

• Designed for large data set applications
– Scientific applications
– Rendering engines
– Server applications

• Improves performance for memory-intensive 
applications

• Xcode 2.0 supports 64-bit development



Finer-grained Kernel Locking
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Access Control Lists
• Conceptual ACL

– List of Access Control 
Entries (ACEs)

– Group or User
– Permissions granted or 

denied

• Each ACL is bound to a file 
system object
– File
– Directory



HFS+ Metadata (EA) Support
• Command line support

– cp, mv, ditto
– Remote copy engines: scp, rsync
– Archivers: tar, zip, cpio
– Editors: vim, emacs, pico

• No need for “enhanced” tools (rsyncX, tar_hfs, cpMac)
• Tiger ↔ Tiger should “just work”
• Investigating Tiger ↔ Non-Tiger



Xgrid 1.0 in Tiger
• Distributed computing for the rest of us

– An easy way to submit and run any number of 
computational tasks on an ad-hoc cluster of Macs

– Xgrid handles the hard work of:
– connecting nodes into a cluster
– managing a queue of jobs and subtasks
– Monitoring node availability
– scheduling the tasks on the nodes
– copying executables and input data to nodes
– staging output data and collecting results

– Security can be handled via ad-hoc mutual authentication 
or managed via Open Directory



Two Ways to Use Xgrid in Tiger
• Use the “xgrid” tool

– Factor computational code into command-line executable
– Use Xgrid to distribute work and collect results
– (Recommended for current projects)

• Integrate with your application using Cocoa API
– Distribute tasks if grid available
– Monitor status of work
– Retrieve results from Xgrid controller

• See http://www.apple.com/acg/xgrid/ for more info



Xcode 2.0



• The fastest way to create Mac OS X applications
– GCC 4.0
– Optimized for Power Mac G5
– High performance development technologies

– Fix and continue
– Predictive compile
– Zero Link
– Distributed build

– Shark and CHUD performance tools
– G4 and G5 optimizers with every system
– Included at no additional cost

Xcode



Tiger Performance Math APIs 
• At every level, usability is straightforward

– Library APIs internally dispatch for G3 vs. G4, G5, 
– One binary safely runs on all platforms
– libm links by default (just like libc)

• For “long double” and “complex” APIs: 
– libmx.a (”-l mx”)

• For vForce, BLAS, LAPACK, vDSP, vImage: 
– “-framework Accelerate”



• Leverages new features of G5 processor
– Algorithms recast at instruction level to exploit 2 FPUs

– Careful attention paid to dispatch group formation
– Careful attention paid to Load/Store hazards

– Hardware square root
– Faster on G4 too!
– New libmx.a for complex double and long double math

G5-Tuned Libm



vForce

The Accelerate Framework in Tiger

Formerly vecLib

Accelerate

vImage vDSP BLAS LAPACK

vMathLib vBigNum



• Robust library for low-effort performance enhancement
– Digital signal processing: 1-D, 2-D FFTs [vDSP]
– BLAS Levels 1, 2, 3 (ATLAS tuned, selectively SMP aware)
– LAPACK, linear systems and eigenvalue problems
– Tuned 4x4, 8x8, 16x16, 32x32 matrix multiplies
– Heavy use of Velocity Engine throughout for single 

precision
– Using from C

Vector Libraries

#include < Accelerate/Accelerate.h>
cc someMath.c -O2 -framework Accelerate



Launchd
• Merges the functionality of init, mach_init, xinetd, 

cron and System Starter
• Understands legacy configuration files (via translating 

parsers) in addition to new plist configuration files
• Much more flexible rules for determining when and 

why to launch a service
• Provides a single interface for registering, starting, 

stopping and interrogating services
• Takes almost all the hard work out of writing a 

network or Mach IPC based service



ASL - The Apple System Logger
• Fully backwards compatible with syslog
• Supports arbitrary output plug-ins for storing log data 

as well as client and server side filters
• Unified log message format and encoding
• Command-line tool for controlling logging behavior, 

searching and pruning log messages
• Both client and server-side log threshold control
• Still evolving: Will eventually consolidate all log data 

produced on Mac OS X



UNIX command/library updates
• Commands and libraries updated to FreeBSD 5.x
• Perl, python and ruby all updated to latest versions
• Tcl updated and Aqua Tk added for portable UI 

programming
• Tkinter and wxWidgets added for portable Python UI 

programming
• Looking at UI portability solution for PERL too
• The AT&T Korn shell is now bundled - Solaris users will 

find this useful



UNIX/Linux compatibility
• dlopen() and friends are now native (and preferred 

API for dealing with dynamic loading)
• poll() is now native
• kqueue() support much improved
• Even more SYSV compatibility (ipcs, iprm, et al)
• Improved pthread support
• MUCH more compatibility with the UNIX03 spec in 

headers and libraries



Core Image
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Core Image
• Hardware-accelerated real-time 

image processing and rendering
• Per-pixel programming
• Floating-point precision
• Support for Core Video
• Effects and transitions
• Image Units



Included Filters
Focus Filters • Gaussian Blur • Motion Blur • Zoom Blur • Unsharp Mark  Color Adjustment 

Filters • Color • Controls • Color Matrix • Exposure Adjust • Gamma Adjust • Hue Adjust • White 

Point Adjust  Color Filters • Color Invert • Color Monochrome • Color Posterize • False Color • 

Sepia Tone   Compositing Filters • Addition • Maximum • Minimum • Multiply • Source Atop • 

Source In • Source Out • Source Over  Distortion Filters • Bump Distortion • Displacement 

Distortion • Glass Distortion • Glass Lozenge • Torus Lens Distortion • Twirl Distortion • Vortex 

Distortion  Generator Filters • Checkerboard • Constant Color • Lenticular Halo • Star Shine • 

Stripes • Sunbeams  Geometry Filters • Affine Transform • Crop • Perspective Transform  

Gradient Filters • Gaussian Gradient • Linear Gradient • Radial Gradient  Halftone Filter • Circular 

Screen •  Dot Screen • Hatched Screen • Line Screen  Stylish Filters • Bloom • Edges • 

GloomPixellate • Spot Light  Tile Filters • Affine Tile • Op Tile • Parallelogram Tile • Perspective Tile 

• Triangle Tile • Triangle Tile  Transition Filters • Copy Machine • Dissolve • Flash • Mod • Ripple 

........    



Dashboard





Dashboard Widgets
• Exposé-like access 
• Web widgets
• Accessory widgets
• Widgets built in
• Easy to build with Webkit



Automator



Automator
• Automation of repetitive or 

complex tasks
• No programming required
• Interactive or fully 

automated
• 100+ Actions for Finder, 

iLife, Mail, Address Book, 
iCal, and more

• Developers can add actions
• Reusable automations 
• Leverages the power of 

Mac OS X technologies



Search for 
actions

Control your 
program
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category

Available 
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Selected 
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description

Results 
feed the 
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Action

Custom 
settings for 
each action



First Half of 2005



Future Challenges
• Package management and ports collection
• Sandboxing things for security
• Unified system administration interfaces
• Make things more friendly to clustering
• Continue to increase performance (both overall and 

for specific applications)
• Balance the needs of the desktop and the enterprise



Q&A




