
MAC OS X

 A UNIX™ Geek’s perspective

Jordan Hubbard
Engineering Manager, BSD Technology Group

Apple Computer

Who am I?
• Long-time contributor to the Open Source community

– Volume 1 of comp.sources.unix even, which makes me old
• Background as a UI designer and big early advocate of

the X Window System - wrote “awm”, the first reparenting
Window Manager, various toolkits and widgets, etc.

• Long-suffering administrator at U.C. Berkeley
• Co-founder of the FreeBSD project and benevolent

dictator of it for abount 8 years
• Over 20 years of Unix development, but comparatively

new to Apple and the Macintosh platform
– Only came to Apple once it had a real OS

Why UNIX was the right technology
• Highly “composeable” as operating systems go

– It’s an onion, not a potato
• It gave us a huge amount of open source to leverage

and this was critical to the implementation process
• Instant portability for a huge number of important

applications (and important users) in SciTech and other
fields

• Interoperability with *BSD, Linux, Solaris and other UNIX-
derivatives came almost for free

Why UNIX was the right technology
• Development community is active, innovative and has a

strong and well-established track record on OS design
• Influential in decision making

Unix Family Tree

Unix UTS

BSD

System V

Mach
NeXTSTEP

1969 1978 1981 1983 1985 1988

SunOS

Ultrix

HP-UX

1991 1999

Linux

SCO UNIX

Xenix

Locus

System III

Irix

AIX

OSF/1

Mac OS X
Solaris

FreeBSD

Mac OS X Users: 12 Million

Jul
 '0

1

O
ct

'01

Jan
 '0

2

Apr
 '0

2
Jul

 '0
2

O
ct

'02

Jan
 '0

3

Apr
 '0

3

Jun
 '0

3

O
ct

'03

Jan
 '0

4

Apr
 '0

4

Jun
 '0

4

O
ct

'04
0

3

6

9

12

Applications: 12,000 Mac OS X Native

Apr
 '0

1
Jul

 '0
1

O
ct

'01

Jan
 '0

2

Apr
 '0

2
Jul

 '0
2

O
ct

'02

Jan
 '0

3

Apr
 '0

3

Jun
 '0

3

O
ct

'03

Jan
 '0

4

Apr
 '0

4

Jun
 '0

4

O
ct

'04
0

3,000

6,000

9,000

12,000

Mac OS X is now the
biggest desktop UNIX
variant on the planet

Mac OS X 10.3
Panther, a quick overview

Apple Confidential

Mac OS X Architecture

User Interface

Application Frameworks

Graphics and Media

System Services

OS Foundation

Applications

OS Foundation

BSD Commands and
Libraries

Mach Kernel
VM IPCScheduling

User

Kernel

Usermode
FileSystem

Usermode
Drivers

Drivers

IOKit
Driver

Families

BSD Kernel

Process
Management

FileSystem Network

Open Source “Darwin” base

OS Foundation

BSD Commands and
Libraries

Mach Kernel
VM IPCScheduling

User

Kernel

Usermode
FileSystem

Usermode
Drivers

Drivers

IOKit
Driver

Families

BSD Kernel

Process
Management

FileSystem Network

BSD Kernel
• FreeBSD 4.8 based (networking, vfs, filesystems, etc)
• Unified Buffer Cache (different than FreeBSD’s)
• Clustered I/O performance enhancements
• Local File Systems

– hfs, ufs, iso9660, udf, fat, ntfs

• Network File Systems
– nfs, afp, smb, webDAV, ftpfs

BSD Networking
• Full IPv6 support
• L2TP/IPSec VPN client and server
• 802.1x wireless authentication (TLS, TTLS, LEAP, PEAP,...)
• Firewall based on ipfw
• Network Reachability APIs

OS Foundation

BSD Commands and
LibrariesUser

Kernel

Usermode
FileSystem

Usermode
Drivers

Drivers

IOKit
Driver

Families

BSD Kernel

Process
Management

FileSystem Network

Mach Kernel
VM IPCScheduling

Mach Kernel
• Based on Mach 3
• VM, tasks, threads, scheduling and IPC
• Fine grain locking for SMP
• Support for > 4GB Physical memory
• [fairly] Light-weight threading model makes aggressive

threading more practical
• Real-time scheduling
• Event driven application programming model (via Mach

ports)

OS Foundation

BSD Commands and
Libraries

Mach Kernel
VM IPCScheduling

User

Kernel

Usermode
FileSystem

Usermode
Drivers

BSD Kernel

Process
Management

FileSystem Network

Drivers

IOKit
Driver

Families

IOKit
• Written in conservative C++
• OOP device family and instance model
• Support for user space drivers
• Dynamic plug and play
• Handles all device property information and provides

convenient introspection via ioreg(1) and friends
• Sophisticated power management

OS Foundation

Mach Kernel
VM IPCScheduling

User

Kernel

Usermode
FileSystem

Usermode
Drivers

Drivers

IOKit
Driver

Families

BSD Kernel

Process
Management

FileSystem Network

BSD Commands and
Libraries

Commands and Libraries
• Standard commands and libraries from FreeBSD 4.8
• A full suite of scripting languages

– perl, tcl, python, ruby, php
• Every standard shell

– bash, csh, tcsh, zsh, etc
• Standard editors

– pico, vi, emacs (the only one you actually need)
• Standard C compiler suite

– gcc, g++, Objective-C [version 3.3]

Apple Confidential

Mac OS X Architecture

User Interface

Application Frameworks

Graphics and Media

System Services

OS Foundation

Applications

Open Directory
• Flexible plug-in architecture

– Supports legacy flat files
– Supports OpenLDAP
– Supports Active Directory

• Open Source
– http://developer.apple.com/darwin/

projects/opendirectory/

Security Server

• Full CDSA (Common Data Security
Architecture) implementation

• Plugin-based authentication
• Implements keychains for easy access
• It’s not OpenSSL
• Open Source references:

– http://developer.apple.com/darwin/
projects/security/

– http://sourceforge.net/projects/cdsa/

Rendezvous

• Service registration
• Service discovery
• Easy ad-hoc networking via .local

namespace
• Also available for FreeBSD, Solaris &

Linux (and a number of misc devices)
• Open Source references:

– http://developer.apple.com/macosx/
rendezvous/

Apple Confidential

Mac OS X Architecture

User Interface

Application Frameworks

Graphics and Media

System Services

OS Foundation

Applications

2D Graphics: Quartz
• PDF-based imaging model
• Leverages GPU
• CUPS “WYSIWYG” printing
• Python bindings

– CoreGraphics APIs
– QuickTime images
– PDF, RTF, HTML

3D Graphics: OpenGL

11 10/29/04Apple Confidential

Industry Standard
3D Technology

Keeping the world safe from DirectX

Apple Confidential

Mac OS X Architecture

User Interface

Application Frameworks

Graphics and Media

System Services

OS Foundation

Applications

Also supports X11
• Based on XFree86 4.4

• Implements X11R6.6

• Includes basic X apps e.g. xterm, xcalc, xedit, etc

• Hardware OpenGL rendering

• Native Aqua and X11 applications run side by side

• Or you can run it in Full Screen mode

Apple Confidential

Apple Confidential

Mac OS X Architecture

User Interface

Application Frameworks

Graphics and Media

System Services

OS Foundation

Applications

Most of the important ones...
• Microsoft Office
• Photoshop
• Quicken / Quickbooks
• Quark Xpress
• Macromedia Director and

Macromedia Studio
• ... and many many more, either here

or coming soon

The challenges of UNIX...

Challenge: Authentication

Sorry, this is not a user information database:

nobody:*:-2:-2:Unprivileged User:/:/usr/bin/false
root:*:0:0:System Administrator:/var/root:/bin/sh
daemon:*:1:1:System Services:/var/root:/usr/bin/false
smmsp:*:25:25:Sendmail User:/private/etc/mail:/usr/bin/false
lp:*:26:26:Printing Services:/var/spool/cups:/usr/bin/false
postfix:*:27:27:Postfix User:/var/spool/postfix:/usr/bin/false
www:*:70:70:World Wide Web Server:/Library/WebServer:/usr/bin/false
mysql:*:74:74:MySQL Server:/var/empty:/usr/bin/false
sshd:*:75:75:sshd Privilege separation:/var/empty:/usr/bin/false

The present looks a lot more like this ...

Windows PCs

The Intar-web

NFS Server

Active

Directory

Open

LDAP

Windows PDC UNIX LDAP Server

Network Client Machines

Network Printer

Challenge: Authentication
• The traditional UNIX group model is obsolete
• The uid is obsolete and insufficient - prepare

for the GUUID (and privacy concerns)
• Smart Cards (and their successors) are in the

future
• Kerberos everywhere: A good solution, but

still some integration work to do

Challenge: Authentication
• ACLs: Easier to implement than to use
• ACL interoperabilty - fact or fiction?
• The resource fork is back! POSIX

Extended Attributes:
– A challenge for the command line
– A challenge for NFS and non-EA

aware local File Systems

Challenge: API Stability
• Telling people to just recompile their code is NOT

an evolutionary API strategy:
– APIs need to be clearly classified (supported,

unsupported, unstable, marked for death, etc) in
header namespace and doc

– Shared library version numbers aren’t proving
to be sufficient

– Current linker toolchain may not be sufficient
either

Challenge: API Stability

• Restricted Kernel APIs are essential:
– Developers like to poke into the innards,

but this can strongly inhibit innovation
– “Just recompile” not even often an option

in this application space
– Things like /dev/kmem are evil and should

die (and will someday in Mac OS X)
• Proper kernel abstraction can help both the

OS vendor and its 3rd party hackers

Challenge: Administration
• Still too many weird configuration files and

formats (~/Library/Preferences could be taken
further)

• Service control and management is crude
• Remote administration and machine cluster

administration still has a long way to go
• Logging / Auditing (for firefighting) are

haphazard

Challenge: UI + Applications
• The X Window System still sucks as a UI

portability solution
– The X UI toolkit world is still balkanized
– Complex desktop apps can’t use it anyway

• High level APIs - Libc isn’t, but it’s the only
common denominator we have (for now)

• “Scripting” languages (and Java) are one
possible portability bridge

Challenge: Hardware evolution

• Integer performance and clock rate increases are
slowing down with die-shrinks and other issues

• Floating point performance is becoming a more
significant battleground
– Comparatively little compiler tuning and hand-

optimization can have significant effects
– Continuous work on exploiting Altivec in

progress at Apple
• GPUs are also becoming viable as general

purpose computational engines

Challenge: OSS community
• Apple has done a great job leveraging open source, but

there are things we want to improve:
– More effective 2-way collaboration. Not just “pull” but

“push”
– Greater visibility into the OS dev process (particularly with

bug reporting)
– More timely source drops which always match current OS

and update version
– More “co-production” with OSS community, where and

when it matches their mission

Tiger - A selective preview

Some UNIX challenges we are addressing...

64-Bit Features
• 64-bit addressing for user tasks

– Up to 16 exabytes of addressable virtual
memory

• Designed for large data set applications
– Scientific applications
– Rendering engines
– Server applications

• Improves performance for memory-intensive
applications

• Xcode 2.0 supports 64-bit development

Finer-grained Kernel Locking

vnode

Buffer Cache

File System

vnode

vnode

vnode

TCP/IP

socket socket

en0 ppp0

Networking

Access Control Lists
• Conceptual ACL

– List of Access Control
Entries (ACEs)

– Group or User
– Permissions granted or

denied

• Each ACL is bound to a file
system object
– File
– Directory

HFS+ Metadata (EA) Support
• Command line support

– cp, mv, ditto
– Remote copy engines: scp, rsync
– Archivers: tar, zip, cpio
– Editors: vim, emacs, pico

• No need for “enhanced” tools (rsyncX, tar_hfs, cpMac)
• Tiger ↔ Tiger should “just work”
• Investigating Tiger ↔ Non-Tiger

Xgrid 1.0 in Tiger
• Distributed computing for the rest of us

– An easy way to submit and run any number of
computational tasks on an ad-hoc cluster of Macs

– Xgrid handles the hard work of:
– connecting nodes into a cluster
– managing a queue of jobs and subtasks
– Monitoring node availability
– scheduling the tasks on the nodes
– copying executables and input data to nodes
– staging output data and collecting results

– Security can be handled via ad-hoc mutual authentication
or managed via Open Directory

Two Ways to Use Xgrid in Tiger
• Use the “xgrid” tool

– Factor computational code into command-line executable
– Use Xgrid to distribute work and collect results
– (Recommended for current projects)

• Integrate with your application using Cocoa API
– Distribute tasks if grid available
– Monitor status of work
– Retrieve results from Xgrid controller

• See http://www.apple.com/acg/xgrid/ for more info

Xcode 2.0

• The fastest way to create Mac OS X applications
– GCC 4.0
– Optimized for Power Mac G5
– High performance development technologies

– Fix and continue
– Predictive compile
– Zero Link
– Distributed build

– Shark and CHUD performance tools
– G4 and G5 optimizers with every system
– Included at no additional cost

Xcode

Tiger Performance Math APIs
• At every level, usability is straightforward

– Library APIs internally dispatch for G3 vs. G4, G5,
– One binary safely runs on all platforms
– libm links by default (just like libc)

• For “long double” and “complex” APIs:
– libmx.a (”-l mx”)

• For vForce, BLAS, LAPACK, vDSP, vImage:
– “-framework Accelerate”

• Leverages new features of G5 processor
– Algorithms recast at instruction level to exploit 2 FPUs

– Careful attention paid to dispatch group formation
– Careful attention paid to Load/Store hazards

– Hardware square root
– Faster on G4 too!
– New libmx.a for complex double and long double math

G5-Tuned Libm

vForce

The Accelerate Framework in Tiger

Formerly vecLib

Accelerate

vImage vDSP BLAS LAPACK

vMathLib vBigNum

• Robust library for low-effort performance enhancement
– Digital signal processing: 1-D, 2-D FFTs [vDSP]
– BLAS Levels 1, 2, 3 (ATLAS tuned, selectively SMP aware)
– LAPACK, linear systems and eigenvalue problems
– Tuned 4x4, 8x8, 16x16, 32x32 matrix multiplies
– Heavy use of Velocity Engine throughout for single

precision
– Using from C

Vector Libraries

#include < Accelerate/Accelerate.h>
cc someMath.c -O2 -framework Accelerate

Launchd
• Merges the functionality of init, mach_init, xinetd,

cron and System Starter
• Understands legacy configuration files (via translating

parsers) in addition to new plist configuration files
• Much more flexible rules for determining when and

why to launch a service
• Provides a single interface for registering, starting,

stopping and interrogating services
• Takes almost all the hard work out of writing a

network or Mach IPC based service

ASL - The Apple System Logger
• Fully backwards compatible with syslog
• Supports arbitrary output plug-ins for storing log data

as well as client and server side filters
• Unified log message format and encoding
• Command-line tool for controlling logging behavior,

searching and pruning log messages
• Both client and server-side log threshold control
• Still evolving: Will eventually consolidate all log data

produced on Mac OS X

UNIX command/library updates
• Commands and libraries updated to FreeBSD 5.x
• Perl, python and ruby all updated to latest versions
• Tcl updated and Aqua Tk added for portable UI

programming
• Tkinter and wxWidgets added for portable Python UI

programming
• Looking at UI portability solution for PERL too
• The AT&T Korn shell is now bundled - Solaris users will

find this useful

UNIX/Linux compatibility
• dlopen() and friends are now native (and preferred

API for dealing with dynamic loading)
• poll() is now native
• kqueue() support much improved
• Even more SYSV compatibility (ipcs, iprm, et al)
• Improved pthread support
• MUCH more compatibility with the UNIX03 spec in

headers and libraries

Core Image

Graphics Processing Power

1998 1999 2000 2001 2002 2003 2004
0

1,300

2,600

3,900

5,200

6,500

31 75 200

800
1,200

2,000

6,400

Source: NVIDIA

Million Pixels/Second

6,400

Source: NVIDIA

Core Image
• Hardware-accelerated real-time

image processing and rendering
• Per-pixel programming
• Floating-point precision
• Support for Core Video
• Effects and transitions
• Image Units

Included Filters
Focus Filters • Gaussian Blur • Motion Blur • Zoom Blur • Unsharp Mark Color Adjustment

Filters • Color • Controls • Color Matrix • Exposure Adjust • Gamma Adjust • Hue Adjust • White

Point Adjust Color Filters • Color Invert • Color Monochrome • Color Posterize • False Color •

Sepia Tone Compositing Filters • Addition • Maximum • Minimum • Multiply • Source Atop •

Source In • Source Out • Source Over Distortion Filters • Bump Distortion • Displacement

Distortion • Glass Distortion • Glass Lozenge • Torus Lens Distortion • Twirl Distortion • Vortex

Distortion Generator Filters • Checkerboard • Constant Color • Lenticular Halo • Star Shine •

Stripes • Sunbeams Geometry Filters • Affine Transform • Crop • Perspective Transform

Gradient Filters • Gaussian Gradient • Linear Gradient • Radial Gradient Halftone Filter • Circular

Screen • Dot Screen • Hatched Screen • Line Screen Stylish Filters • Bloom • Edges •

GloomPixellate • Spot Light Tile Filters • Affine Tile • Op Tile • Parallelogram Tile • Perspective Tile

• Triangle Tile • Triangle Tile Transition Filters • Copy Machine • Dissolve • Flash • Mod • Ripple

........

Dashboard

Dashboard Widgets
• Exposé-like access
• Web widgets
• Accessory widgets
• Widgets built in
• Easy to build with Webkit

Automator

Automator
• Automation of repetitive or

complex tasks
• No programming required
• Interactive or fully

automated
• 100+ Actions for Finder,

iLife, Mail, Address Book,
iCal, and more

• Developers can add actions
• Reusable automations
• Leverages the power of

Mac OS X technologies

Search for
actions

Control your
program

125 actions
organized by

category

Available
actions

Selected
action

description

Results
feed the
next action

Action

Custom
settings for
each action

First Half of 2005

Future Challenges
• Package management and ports collection
• Sandboxing things for security
• Unified system administration interfaces
• Make things more friendly to clustering
• Continue to increase performance (both overall and

for specific applications)
• Balance the needs of the desktop and the enterprise

Q&A

