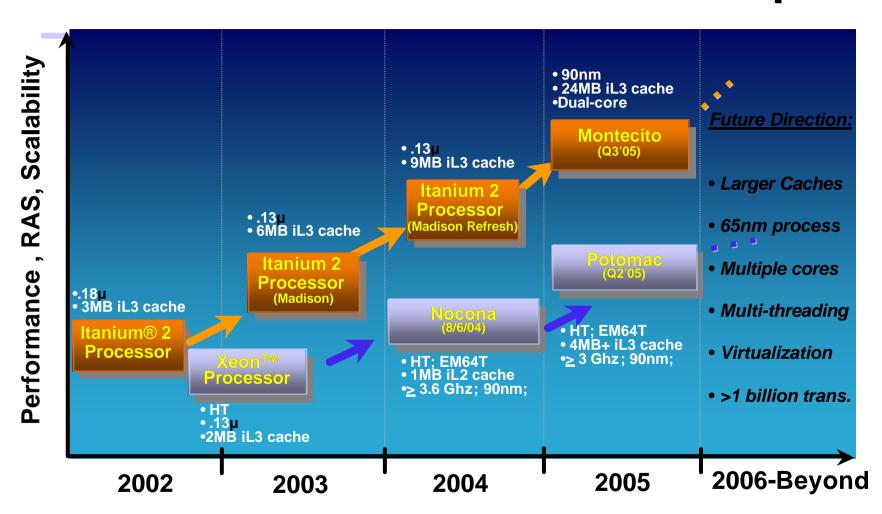
HEPiX Large System SIG Report

Platforms For Physics Linux Grid Operations Experience

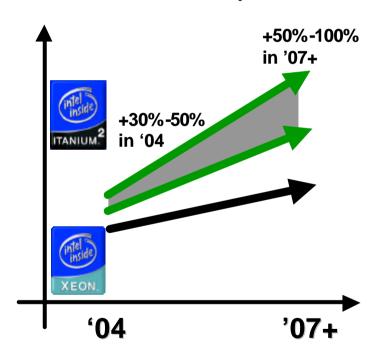
Matthias Schröder, IT/PS


Platforms For Physics

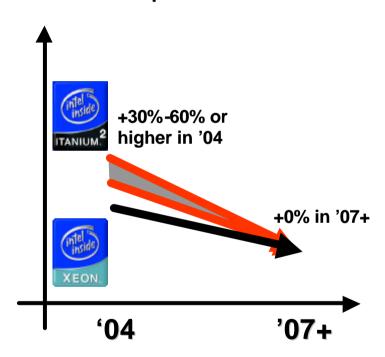
- Intel Processor Roadmap
- 64 bit Extensions
- Performance AMD/Intel
- Cooling Issues
- Huge Memory System
- Mac G5 Cluster

Intel Processor Roadmap [King]

- Intel will maintain Xeon and Itanium lines
- Xeon expected to follow Moore's law
- Itanium expected to outpace Moore's law
 - Itaniums performance
- Xeon better price/performance than Itanium
 - But gap is expected to narrow with time, close by 2007?
- Itanium should be first to get multi-cores
 - ...and stay ahead of Xeon
 - 2 cores in 2005
 - 4 cores in 2007 (target is 8 cores in 2007)


Intel® Server Processor Roadmap

Intel® Server Processor Platforms


Performance¹

On track to deliver 1.5-2X better performance than Intel® Xeon™ processor

Platform Cost²

While achieving platform cost parity via common platform infrastructure

Source: www.ioncomputers.com, www.dell.com

ION SR4004, (4) Xeon processors 2.8 GHz, 2MB cache, 24 GB system memory, 36 GB HDD, no OS - \$34,616 ION I2X4, (4) Itanium 2 processors 1.5 GHz, 6 MB cache, 24 GB system memory, 36 GB HDD, no OS - \$44, 950 Dell PowerEdge 2650, (2) Xeon processors 3.2 GHz, 1 MB cache, 4 GB system memory, 36 GB HDD, no OS - \$6,143 Dell PowerEdge 3250, (2) Itanium 2 processors 1.4 GHz, 1.5 MB cache, 4 GB system memory, 36 GB HDD, no OS - \$9,499

¹ Data based on Intel projections.

² '04 Price based on comparable OEM systems, HW only for enterprise and technical computing applications.

64 bit Extensions [King]

- 64 bit extensions allow addressing larger memory
 - 40 bits physical, 48 bits virtual memory
- Full 4 GB address space, easy to use with legacy apps
- Require adapted OS
 - Microsoft
 - (planned for 1H05)
 - Redhat
 - EL 3 update 2
 - Suse
- Have to watch for availability of needed drivers & compilers

64 bit Extensions AMD/Intel [Wiesand]

- DESY looked at 64 bit extension systems
 - AMD64 / Xeon EM64T
- Ran performance tests
 - Root, Sieglinde, Pythia, FORM
 - Compared build times and run times
 - Please see
 http://www.rhic.bnl.gov/hepix/talks/041021am/wiesand.pdf for details
 - 64 bit mode much better performance than 32 bit
 - Up to 30%
 - Opteron better performance than Xeon
 - Even more pronounced for second CPU (memory access?)

64 bit Extensions – Issues [Wiesand]

- All libs have to be recompiled for 64 bit mode
 - Cernlib is not
 - Blocks many legacy apps from profiting from performance boost
- FP registers are 64 bit again
 - Not 80 bit as in x87 units
- 64 bit Linux systems allow using 32 bit apps
 - 32 bit libs live under ../lib
 - 64 bit libs live under ../lib64
 - ...with some exceptions...
 - Mixed installation sometimes a pain
- 64 bit ext's allow us to prepare code for 64 bit era

IA64 Servers [Hirstius/Horvath/Iven]

- Test setup for LHC Tier 0 data rates
 - A.Hirstius and A.Horvath, IT/ADC
 - In framework of openlab
 - Total data rate estimated at 55GB/s
- Target for 2005: 500MB/s disc to disc, sustained
- Requires multiple 1 Gb/s or 1 10 Gb/s connection
 - 10 Gb/s connection more expensive, but closer to reality
- Few 10Gb connections available from CERN

IA64 Servers [Hirstius/Horvath/Iven]

- Disc to memory results:
 - Internal data rates (ms+ss)
 - ~770MB/s read
 - ~350MB/s write
 - 10Gb back-to-back (ms+ss)
 - ~710MB/s read (NIC is the limitation)
 - ~350MB/s write
 - 10Gb to California (ss)
 - ~660MB/s read :-)) (~1300GB in 2000s)
- Similar tests using Infiniband have started

Cooling Issues [Alef]

- High density systems produce lots of heat per m²
- In extreme cases setup at limit of air cooling
- Potential solution: water cooling
 - Cool CPU directly
 - Cool the rack
- Karlsruhe went for water cooled racks from Knürr
- Currently using 30 racks
 - 25 more on order
- Experience very good
 - No significant problems
 - Noise level reduced significantly

Mac G5 Cluster [Boeheim]

- Requested from Astrophysics group at SLAC
 - Already used as desktops
 - Nice visualisation features
- 2 file servers, 2 interactive servers, 10 compute nodes
- Hardware installation very easy
 - Nice setup fitting in 19" racks
- No remote BIOS management and no power mgt.
- BSD based OS, but many confusing config details
 - Passwd file exists, but not used
- Non-case sensitive HFS+ file system
 - Makefile and makefile are the same

Huge Memory System [Wachsmann/Mount]

- Major computing challenge: sparse access to objects in large datasets
- Going through huge datasets dominated by latency
 - True for tape and disc
 - Going several times through whole dataset painful
- Loading whole dataset into memory would ease 'skimming off' interesting events
- Huge memory machines would allow this
 - Cluster of fast CPUs, huge memory, high bandwidth netw
 - New techniques for memory access needed
- Interesting not only for HEP

Linux

- Scientific Linux
- Experience with RedHat TAM

Scientific Linux

- Several sites decided to go for Scientific Linux
 - Fedora too short support times
 - RH Enterprise Linux too expensive
 - Except for specific applications on limited # of nodes
 - Shortcomings of other distributions
 - Require change of installation procedures
 - Support for third party apps uncertain
- Many now preparing or started conversion
 - Some nodes still on old Linux versions
 - Some nodes available under SL
- Sites preparing own systems for configuration mgt.
- FNAL have put major effort into providing SL

Scientific Linux

- CERN makes special release of SL
 - CERN add-ons
 - Distribution closer to RH than original SL
 - Other sites can use CERN distribution with or without CERN mods
- Original SL already contains handles for local tailoring

RedHat TAM

- Technical Account Management
- Allows close technical contact with RedHat
- RH contact person knows on site environment
 - Not always true for replacement...
- Get early information about RH plans & developments
- Response to requests for help rather fast
- Response to change requests much slower
- Help restricted to pure code from RH distribution
- Experience are mixed
 - SLAC happy with support
 - CERN still evaluating usefulness

Grid Operations Experiences

- Operational Models
- Monitoring and Accounting
- Incident Response/Security

General Operations Issues

- Not all sites created equal
 - Large sites
 - Might be part of many grids
 - Want flexible & powerful installation tools
 - Have staff for monitoring & support
 - Might discover issues with Tiers 'below'
 - Small sites
 - Usually participate in one grid only
 - Want easy to use installation tools
 - Have little or no staff for monitoring & support
 - Are reluctant to allow intervention from Tier 'above'

Communication between sites

- LCG developed hierarchical model with Regional Centers
 - Allows more flexibility and regional policies
 - GOC not supposed to contact sites directly
 - Adds latency in communication with sites
- In reality lots of direct communication with sites
 - Very resource consuming for GOC
- Unique problem tracking system for all levels & all sorts of problems needed
- Lack of true hierarchy requires cooperative approach

Data Challenges

- Large scale production effort of the LHC experiments
 - test and validate the computing models
 - produce needed simulated data
 - test experiments production frame works and software
 - test the provided grid middleware
 - test the services provided by LCG-2
- All experiments used LCG-2 for part of their production
- Daily 'Grid certification' important for success
- Many operational issues discovered
 - See Markus slides for full list...
- Grid middleware rather stable now
- Better tools needed for bulk handling of jobs

Monitoring

- LCG: now ~8000 CPUs & 96 TB discs on 83 sites
- Many local particularities of grid sites
 - complicates monitoring
 - LCG GOC established configuration database of sites
- A number of tools are used for monitoring
 - See http://www.rhic.bnl.gov/hepix/talks/041022am/grundhoefer.pdf
 - Many don't have feature to store monitoring info
 - Relational Grid Monitoring Archiver stores their output
 - Information stored by R-GMA can be used for accounting

Incident Response Plans

Open Science Grid

- Has little or no control over physical resources
- almost everything has to be done by the sites or the Vos
- Sites security personnel will need to feel comfortable with grid use of resources
 - limited additional risks
 - local control over decisions
- Centrally Provided:
 - List of site security points of contact
 - Secure email communications
 - Incident Tracking system
 - Functions of the Grid Operations Center (GOC)
 - Coordinate with other GOCs

Incident Response Plans - OSG

- Responsibility of local sites well defined
 - See http://www.rhic.bnl.gov/hepix/talks/041022am/cowles.ppt
- Incidents classified with 3 levels of severity
 - Potential to compromise grid infrastructure
 - Potential to compromise grid service or VO
 - Potential to compromise grid user
- Response Teams to be created to deal with serious incidents
- Procedure for handling incidents defined
- Plan (will be?) discussed with EGEE and LCG

- All glory goes to the authors of the original slides
- Special thanks to H.Meinhard and A.Silverman for their detailed trip reports
- All errors and omissions are my fault...