
Computing with Floating Point
It’s not Dark Magic, it’s Science

Florent de Dinechin, Arénaire Project, ENS-Lyon
Florent.de.Dinechin@ens-lyon.fr

CERN seminar, January 11, 2004.99999

1 Introduction: Floating point ?
2 Floating-point as it should be: The IEEE-754 standard
3 Floating point as it is
4 A few pitfalls
5 ... and how to avoid them
6 Elementary functions
7 Conclusion

ECOLE NORMALE SUPERIEURE DE LYON

First some advertising

This seminar will only survey the topic of floating-point computing.
To probe further:

What Every Computer Scientist Should Know About
Floating-Point Arithmetic par Goldberg (Google will find you
several copies)

The web page of William Kahan at Berkeley.

The web page of the Arénaire group.

1

Introduction: Floating point ?

1 Introduction: Floating point ?

2 Floating-point as it should be: The IEEE-754 standard

3 Floating point as it is

4 A few pitfalls

5 ... and how to avoid them

6 Elementary functions

7 Conclusion

2

Also known as “scientific notation”

A real number x̂ is approximated in machine by a rational:

x = (−1)s ×m × βe

where

β is the radix

10 in your calculator and (usually) your head
2 in most computers
Some IBM financial mainframes use radix 10, why ?

s ∈ {0, 1} is a sign bit

m is the mantissa, a rational number of nm digits in radix β, or

m = d0, d1d2...dnm−1

e is the exponent, a signed integer on ne bits

nm specifies the precision of the format, and ne its dynamic.

Imposing d0 6= 0 ensures unicity of representation.
3

In programming languages

sometimes real, real*8,

sometimes float,

sometimes silly names like double or even long double
(what’s the semantic ?)

4

Some common misconceptions (1)

Floating-point arithmetic is fuzzily defined, programs involving
floating-point should ne be expected to be deterministic.

⊕ Since 1985 there is a IEEE standard for floating-point
arithmetic.

⊕ Everybody agrees it is a good thing and will do his best to
comply

	 ... but full compliance requires more cooperation between
processor, OS, languages, and compilers than the world is able
to provide.

	 Besides full compliance has a cost in terms of performance.

	 There are holes in the standard (under revision)

Floating-point programs are deterministic, but should not be
expected to be spontaneously portable...

5

Some common misconceptions (2)

A floating-point number somehow represents an interval of values
around the “real value”.

⊕ An FP number only represents itself (a rational), and that is
difficult enough

	 If there is an epsilon or an incertainty somewhere in your data,
it is your job (as a programmer) to model and handle it.

⊕ This is much easier if an FP number only represents itself.

6

Some common misconceptions (3)

All floating-point operations involve a (somehow fuzzy) rounding
error.

⊕ Many are exact, we know who they are and we may even force
them into our programs

⊕ Since the IEEE-754 standard, rounding is well defined, and
you can do maths about it

7

Some common misconceptions (4)

I need 3 significant digits in the end,
a double holds 15 decimal digits,
therefore I shouldn’t worry about precision.

	 You can destroy 14 significant digits in one subtraction

	 it will happen to you if you do not expect it

⊕ It is relatively easy to avoid if you expect it

A variant of the previous: PI=3.1416

⊕ sometimes it’s enough

	 to compute a correctly rounded sine, I need to store 1440 bits
(420 decimal digits) of π...

8

Floating-point as it should be:
The IEEE-754 standard

1 Introduction: Floating point ?

2 Floating-point as it should be: The IEEE-754 standard

3 Floating point as it is

4 A few pitfalls

5 ... and how to avoid them

6 Elementary functions

7 Conclusion

9

In the beginnings, floating-point computing was a mess

no hope of portability

little hope of proving results e.g. on the numerical stability of
a program

horror stories : arcsin

(
x√

x2 + y2

)
could segfault on a Cray

therefore, little trust in FP-heavy programs

10

Motivations and rationale behind the IEEE-754 standard

Ensure portability

Ensure provability

Ensure that some important mathematical properties hold

People will assume that x + y == y + x
People will assume that x + 0 == x
People will assume that x == y ⇔ x − y == 0
People will assume that x√

x2+y2
≤ 1

...

These benefits should not come at a significant performance
cost

Obviously, we need to specify not only the formats but also the
operations.

11

Normal numbers

Desirable properties :

an FP number has a unique representation

every FP number has an opposite

Normal numbers:

x = (−1)s × 2e × 1.m

Imposing d0 6= 0 ensures unicity of representation.

In radix β = 2, d0 6= 0 =⇒ d0 = 1: It needn’t be stored.

single precision: 32 bits
23+1-bit mantissa, 8-bit exponent, sign bit

double precision: 64 bits
52+1- bit mantissa, 12-bit exponent, sign bit

double-extended: anything better than double
IA32: 80 bits
IA64: 80 or 82 bits
Sparc: 128 bits, aka “quad precision”

12

Exceptional numbers

Desirable properties :

representations of ±∞ (and therefore ±0)

standardized behaviour in case of overflow or underflow.

return ∞ or 0, and raise some flag/exception

representations of NaN: Not a Number (result of 00,
√
−1, ...)

Quiet NaN
Signalling NaN

Infinities and NaNs are coded with the maximum exponent (you
probably don’t care).

13

Subnormal numbers

x = (−1)s × 2e × 1.m

−8−8

0

−7
−0.11111.2 −0.10000 .2−0.10000 .2

Desirable properties :

x == y ⇔ x − y == 0

Graceful degradation of precision around zero

Subnormal numbers: if e = emin, the implicit d0 is equal to 0:

x = (−1)s × 2e × 0.m

−0.00001 .2
−8

−0.01111 .2
−8

−8
−0.10000 .2

−0.11111.2
−8

−7
−0.10000 .2

0

14

Operations

Desirable properties :

if a + b is a FP number, then a⊕ b should return it

Rounding should not introduce any statistical bias

Sensible handling of infinities and NaNs

Correct rounding to the nearest:
The basic operations (noted ⊕, 	, ⊗, �), and the square root
should return the FP number closest to the mathematical result.
(in case of tie, round to the number with an even mantissa =⇒ no bias)

Three other rounding modes: to +∞, to −∞, to 0, with similar
correct rounding requirement.

15

A few theorems (useful or not)

Let x and y be FP numbers.

Sterbenz Lemma: if x/2 < y < 2x then x 	 y = x − y

The rounding error when adding x and y : r = x + y − (x ⊕ y)
is an FP number, and it may be computed as

r := b 	 ((a⊕ b)	 a);

The rounding error when multiplying x and y :
r = xy − (x ⊗ y) is an FP number and may be computed by a
(slightly more complex) sequence of ⊗, ⊕ and 	 operations.

√
x ⊗ x + y ⊗ y ≥ x

...

16

The conclusion so far

We have a standard for FP, and it is a good one

17

Floating point as it is

1 Introduction: Floating point ?

2 Floating-point as it should be: The IEEE-754 standard

3 Floating point as it is

4 A few pitfalls

5 ... and how to avoid them

6 Elementary functions

7 Conclusion

18

Who is in charge of ensuring the standard in my machine ?

The processor
has internal FP registers,
performs FP operations,
raises exceptions,
writes results to memory.

The operating system
handles exceptions
computes functions/operations not handled directly in
hardware (subnormal numbers on Alpha)
handles floating-point status: precision, rounding mode, ...

The programming language
should have a well-defined semantic

The compiler
should preserve the well-defined semantic of the language

The programmer
has to be an expert in all this ? Hey, we are physicists !

In 2005, I’m afraid you still have to be a little bit in charge.
19

Let us first review a few processors

... more precisely, a few families defined by their instruction sets.

20

The IA32 instruction set (aka x86)

Implemented in processors by Intel, AMD, Via/Cyrix, Transmeta...

internal double-extended format on 80 bits:
mantissa on 64 bits, exponent on 15 bits.

(almost) perfect IEEE compliance on this double-extended
format

one status register which holds (among other things)

the current rounding mode
the precision to which operations round the mantissa: 24, 53
or 64 bits.
but the exponent is always 15 bits

For single and double, IEEE-754-compliant rounding and
overflow handling (including exponent) performed when
writing back to memory

There is a rationale for all this.

21

What it means

Assume you want a portable programme, i.e use double-precision.
Fully IEEE-754 compliant possible, but slow:

set the status flags to “round mantissa to 53 bits”
then write the result of every single operation to memory
(not every single but almost)

Next best: compliant except for over/underflow handling:
set the status flags to “round mantissa to 53 bits”
but computations will use 15-bit exponents instead of 12
OK if if you may prove that your program doesn’t generate
huge nor tiny values

Default behavior for C/gcc in Linux:
All the computations on registers are done in double-extended
precision, even if the variables were declared as double.
Round to actual double only when writing to memory.

⊕ More accurate in the common case (when portability not an
issue)

	 ... but it’s the compiler who decides which variable is held in
memory, and which is in register.

	 Dangerous because of double rounding
	 and because of the internal 15-bit exponent22

Do you want to debug this ?

Compile this with gcc on whatever Intel or AMD processor under
Linux:

0 double r e f , i n d e x ;
1

2 r e f = 169 .0 / 1 7 0 . 0 ;
3

4 f o r (i = 0 ; i < 250 ; i++) {
5 i n d e x = i ;
6 i f (r e f == index / (i ndex + 1)) break ;
7 }
8

9 p r i n t f (” i=%d\n” , i) ;

23

Doesn’t work either

9 long double r e f , i n d e x ;
10

11 r e f = 169 .0 / 1 7 0 . 0 ;
12

13 f o r (i = 0 ; i < 250 ; i++) {
14 i n d e x = i ;
15 i f (r e f == index / (i ndex + 1)) break ;
16 }
17

18 p r i n t f (” i=%d\n” , i) ;

24

This one is OK

18 long double r e f , i n d e x ;
19

20 r e f = (long double) 169 .0 / 1 70 . 0 ;
21

22 f o r (i = 0 ; i < 250 ; i++) {
23 i n d e x = i ;
24 i f (r e f == index / (i ndex + 1)) break ;
25 }
26

27 p r i n t f (” i=%d\n” , i) ;

25

Conclusion on this example

Solutions:

live on the ege, and use explicitely double-extended (long
double) everywhere

IA32 processors are perfectly IEEE-compliant when working
only on double-extended.
a lot of work, as previous example shows

set the processor flags to “round to 53 bits”

run Solaris, and not Linux

Sparc hardware does not support double-extended,
and Sun people want portability accross their system range

This example also illustrates another FP adage:

Equality test between FP variables is dangerous.
Or,

If you can replace a==b with (a-b)<epsilon in your code, do it!

26

Quickly, the Macs

Power and PowerPC processors

No double-extended hardware

But one or two FMA: Fused Multiply-and-Add

Compute round(a× b + c): Only one rounding instead of 2
Faster and more accurate
but breaks some expected mathematical properties:
two ways of computing

√
a2 + b2 with different results

Also available on recents MIPS and HP PA-Risc, and on
Itanium

By default, gcc on MacOS X disables the use of FMA
altogether

last time I checked. Your mileage may vary!

In this case you may lose a factor 2 in performance to comply
with IEEE-754

The FMA should be mentioned in the (ongoing) revision of the
IEEE-754 standard

27

Quickly, IA64 (aka Itanium)

A commercial failure so far, but the best available FP architecture

Two double-extended FMA (best of IA32, and best of Power)

instead of one FP status register, 4 of them, selectable on an
instruction-basis

you can mix round up and round down, double and
double-extended
on all other architecture, changing the FP status requires
flushing the pipeline (10-100 cycles)

A register format with two more exponent bits (17).

28

The conclusion so far

We have a standard for FP, and it is a good one

But it is difficult to trust the machine compliance

Now we shall see that even with perfect compliance, floating-point
has intrinsic pitfalls anyway.

29

A few pitfalls

1 Introduction: Floating point ?

2 Floating-point as it should be: The IEEE-754 standard

3 Floating point as it is

4 A few pitfalls

5 ... and how to avoid them

6 Elementary functions

7 Conclusion

30

Beware of subtractions

Cancellation: if you subtract numbers which were very close
(example: 1.2345e0 - 1.2344e0 = 1.0000e-4)

you loose significant digits (and get meaningless zeroes)
although the operation is exact! (no rounding error)

Problems may arise if such a subtraction is followed by
multiplications or divisions

You may get meaningless digits in your result

Two typical examples:
computing the area of a triangle

– formula attributed to Heron of Alexandria:
A :=

√
(s(s − x)(s − y)(s − z)) with s = (x + y + z)/2

– Kahan’s algorithm:
Sort x , y , z so that x ≥ y ≥ z ;
If z < x − y then no such triangle exists ;
else A :=√

((x + (y + z))× (z − (x − y))× (z + (x − y))× (x + (y − z)))/4

solving the quadratic equation by −b±
√

b2−4ac
2a (see references)

31

Beware of additions

In floating-point:

BigNumber + SmallNumber = BigNumber

if BigNumber is big enough.

If you have to add terms of know different magnitude, it may be a
good idea to sort them (see triangle example)

Remark: This is also the recipe for not caring about cancellations!

32

Speaking of which

The semantic of most recent languages is to respect your
parentheses:

if you write (a + b) + c the compiler should not replace it with
a + (b + c), unless it can prove that both computations always
yield the same result.
Even if it would be faster!
if you write r := b - ((a + b)- a) ;
the compiler shouldn’t replace it with r:=0 ;

Well-behaved compilers will respect the semantic of the
language.

Expect to be disappointed here...

gcc is best (not always compliant with standards, but in a
sensible and documented way)
icc is sloppier, but OK if you know people at Intel who will
tell you the undocumented parts.
I know nobody at Microsoft (Kahan has a lot of evil to say
about their compilers).

33

Beware of flushing to zero/infinity

Typical examples:

You compute
x2

√
x3 + 1

for a large value of x

Instead of (large)
√

x you get 0

Here again, the solution is
to expect the problem before it hurts you
and to protect the computation with a test which returns

√
x

for large values
(a more accurate result, obtained faster...)

Extreme version of the previous

f (x) =
√√

....
√

x 128 times

g(x) =
((

(x2)2
)
...
)2

128 times

Compute and plot g(f (x)) for x ∈ [0, 2]

√
1− u = 1− u/2− ...

34

The conclusion so far

We have a standard for FP, and it is a good one

But it is difficult to trust the machine compliance

Anyway even if with perfect compliance, the standard doesn’t
guarantee that the result of your program is close at all to the
mathematical result it is supposed to compute.

35

... and how to avoid them

1 Introduction: Floating point ?

2 Floating-point as it should be: The IEEE-754 standard

3 Floating point as it is

4 A few pitfalls

5 ... and how to avoid them

6 Elementary functions

7 Conclusion

36

And now a little bit of modesty

We computer scientists won’t do all the work.
Nothing replaces good old mathematicians.

Classical example: Muller’s recurrence
x0 = 4
x1 = 4.25
xn+1 = 108− (815− 1500/xn−1)/xn

Any half-competent mathematician will find that it converges
to 5

On any calculator or computer system using non-exact
arithmetic, it will converge to 100

xn =
α3n+1 + β5n+1 + γ100n+1

α3n + β5n + γ100n

37

Serious maths first

Proving the absence of over/underflow may be relatively easy
when you compute energies, not when you compute areas

Cancellation and under/overflow problems usually solved by
some tests, and
different, mathematically equivalent, formulae
provided you have detected the problem before it hurts you...

Sensitivity and conditioning:

Cond =
|relative change in output|
|relative change in input|

= lim
x̂→x

|(f (x̂)− f (x)) /f (x)|
|(x̂ − x)/x |

Cond ≥ 1 problem is ill-conditionned / sensitive to rounding
Cond � 1 problem is well-conditionned / resistant to rounding
Cond may depend on x : again, make cases...

Error analysis techniques: how are your equations sensitive to
roundoff errors ?

Forward error analysis: what errors did you make ?
Backward error analysis: which problem did you solve exactly ?
Several attempts to automate them (see Langlois’ habilitation
thesis @ ENS-Lyon)

Warning: Real maths happen. Your mileage may vary.38

Mindless schemes to evaluate numerical quality of your program

Repeat the computation in arithmetics of increasing precision,
until digits of the result agree.

Maple, Mathematica, GMP/MPFR

Repeat the computation with same precision but different
(IEEE-754) rounding modes, and compare the results.

all you need is change the processor status in the beginning

Repeat the computation a few times with same precision,
rounding each operation randomly, and compare the results.

stochastic arithmetic, CESTAC

Repeat the computation a few times with same precision but
slightly different inputs, and compare the results.

easy to do yourself

None of these schemes provide any guarantee. They may increase
confidence, though.
See “How Futile are Mindless Assessments of Roundoff in Floating-Point

Computation ?” on Kahan’s web page

39

Interval arithmetic

Instead of computing f (x), compute an interval [fl , fu] which
is guaranteed to contain f (x)

operation by operation
use directed rounding modes
several libraries exist

This scheme does provide a guarantee

... which is often overly pessimistic
(“ Your result is in [−∞,+∞], guaranteed”)

Limit interval bloat by being clever (changing your formula)

... and/or using bits of arbitrary precision when needed (MPFI
library).

Therefore not a mindless scheme

Fair tradeoff between mindlessness and manual proof

40

The conclusion so far

We have a standard for FP, and it is a good one

But it is difficult to trust the machine compliance

Anyway even if with perfect compliance, the standard doesn’t
guarantee that the result of your program is close at all to the
mathematical result it is supposed to compute.

But at least it makes it possible to do serious mathematics on
it, and also to try various recipes

One drawback of the standard:

In the 70s, when people ran the same program on different
machines, they got widely different results.

They had to think about it and find what was wrong.

Now they get the same result, and therefore trust it.

We have to educate them...

41

Arithmetic is not always the culprit

Ask first-year students to write an n-body simulation

Run it with one sun and one planet

You always get rotating ellipses

Analysing the simulation shows that it creates energy.

x(t) := v(t)δt

42

Elementary functions

1 Introduction: Floating point ?

2 Floating-point as it should be: The IEEE-754 standard

3 Floating point as it is

4 A few pitfalls

5 ... and how to avoid them

6 Elementary functions

7 Conclusion

43

I’ve been telling lies so far

The IEEE-754 standard for floating-point arithmetic enables
portability and provability of FP algorithms
... at least, as long as no elementary function is used.

Logarithm, exponential, trigonometric, hyperbolic, ...

44

How does your PC compute elementary functions ?

Rule of the game: use only +, −, × (and maybe / and
√

but
they are expensive).

Polynomial approximation on a small interval (degree 3 to 20)

Argument reduction using mathematical identities

Remark: IA32 specifies hardware instructions for elementary
functions. They are microcoded (barely faster than software
equivalent) and often of poor quality.

45

Standardisation of the elementary functions so far

Language standards give lists of functions

Example: appendix B.11 of the C99 standard:
...
double cos(double x) ;
float cosf(float x) ;
long double cosl(long double x) ;
...

but they do not specify their behaviour...

Current practice is to offer implementations in
round-to-nearest mode, which are accurate faithful

or, 0.501 ulp accuracy
or, 99% correctly rounded.

A few libraries do their best to support directed rounding.

Rarer functions may behave badly (hyperbolic on Linux)

100% correct rounding is expensive because of the Table
Maker’s Dilemma

46

The Table Maker’s Dilemma

Finite-precision algorithm for evaluating f (x)
Approximation + rounding errors −→ overall error bound ε.
What we compute: y such that f (x) ∈ [y − ε, y + ε]

y ± ε

y ± ε

y ± ε y ± ε

?
y ± ε y ± ε

If the dilemma happens, try again with improved accuracy
(smaller ε)

Ziv’s onion peeling strategy: improve ε until we can round
Fast in average (high accuracy is rarely needed)
For most transcendental functions, it can be proven to
succeed eventually

47

The first digital signature algorithm

I want 12 significant digits

I have an approximation scheme that
gives 14

or,
y = log(x)± 10−14

“Usually” that’s enough to round

y = x , xxxxxxxxxxx17± 10−14

y = x , xxxxxxxxxxx83± 10−14

Dilemma when

y = x , xxxxxxxxxxx50± 10−14

The first table-maker rounded these cases randomly, and recorded them

to confound copiers.
48

Gal’s probabilities

What is the probability of the Table’s Maker Dilemma ?
(People who appreciate clean statistics should look away for a few
slides)

y = log(x)± 10−14 and we want 12 digits

Assume that the digits after the 12th are uniformely
distributed ...

... then the dilemma occurs once in 100 cases
(when the two last digits are 50).

A more accurate scheme reduces this probability :
y = log(x)± 10−15 −→ once in 1000

In general

y = log(x)± 10−12−N −→ p(Dilemma) ≈ 10−N

49

From the opposite point of view:

The table has a finite number of entries, say 1010.

One of these entries holds the number that is the most
difficult to round

Under the previous flaky probabilistic hypotheses, I expect one
of the 1010 logs to be like

log(x) = x , xxxxxxxxxxx50000000000zz ...

In other terms,

There probably exists a working precision which allows to
round the whole table correctly
We expect it to be about 10 digits after the 12th.

50

With machine FP numbers it’s just the same

Double-precision elementary functions:

More or less 264 numbers, at least 262 entries for each
function.

Floating point correct rounding: at the 53th bit.

Most libms compute about 60 exact bits, and round correctly
most of the time, just like Renaissance tables.

Statistics à la Gal predict worst cases requiring 53 + 64 = 117
bits (more or less).

51

libultim

The first correctly rounded library: IBM Accurate Portable Library,
or libultim, written by Ziv.

one or two steps using double-doubles

further steps using a multiple-precision package (up to 800
bits)

Drawbacks:

unproven

theoretical reason: are 800 bits enough ?
practical reasons...

very large worst-case time and memory

only round-to-nearest mode

directed rounding modes may be more useful (interval
arithmetic)

52

crlibm

Initiated by David Defour’s thesis

Lefèvre and Muller computed worst-case required accuracy for
several functions

this lifts off the theoretical obstacle to proven CR
as expected, correct rounding to double-precision (53 bits)
typically requires 117 bits of internal precision (or ε = 2−117)
up to 150 bits in special cases.

Two Ziv steps only

First step using double-double arithmetic
Second step “just right”, always provide CR, uses an ad-hoc
package for 200-bit precision.

The four IEEE-754 rounding modes

Less than 4KB / function

A proof of the CR property is provided along with the code

53

Double-double ?

Store a high-precision x number as two doubles xh and xl such
as x = xh + xl

yh

yl

Addition and subtraction fast

Multiplication relatively fast

(fast if you have an FMA)

54

Proof of correct rounding ?

Shared work:
many useful FP theorems (Sterbenz, etc)
double-double arithmetic well-known and well-proven
proof of correctness of rounding tests, including special cases
(denormals etc)
Maple procedures e.g. for polynomial approximations

– compute a good polynomial with coefficients representable as
doubles or double-doubles

– compute bound on approximation error
– compute bounds on cumulated rounding errors in Horner

evaluation (both absolute and relative)

Function-specific work
special cases
argument reduction
specific tricks (multiplication by a constant, ...)

A Maple script produces the C header file with all the
constants (poly coeffs etc) and implements the error analysis

will be part of the proof
allows secure exploration of various tradeoffs

55

Long-term goal of this work

Correctly-rounded elementary functions as standard

Proposal: several levels of quality for elementary functions
Level 0: current situation (accurate-faithful)

plus well-defined behaviour in exceptional cases
correct rounding may conflict with the preservation of useful
mathematical properties, e.g. arctan(x) < π/2

Level 1: accurate-faithful, with correct rounding on
well-defined, sensible intervals

sine function: on [−264, 264] (otherwise it’s noise)
or even on [−π, π]

Level 2: correct rounding everywhere
currently feasible for single precision
in double precision, currently feasible for ex , log, 2x and log2

thanks to Muller/Lefèvre
trigonometric functions will require theoretical advances
double-extended precision, too

One important question:

What price are you, the users, ready to pay for correct rounding ?
56

Performance results

log timings:

Pentium 4 Xeon / Linux Debian sarge / gcc 3.3

avg time max time

mpfr 61325 307628

libultim 521 388196

crlibm 534 51608

libm (accurate faithful) 191 6540

PowerPC G4 / MacOS X / gcc2.95

avg time max time

mpfr 4895 8620

libultim 22 19890

crlibm (without FMA) 32 1241

crlibm (using FMA) 24 1144

libm (accurate faithful) 15 16

57

Relaxing portability constraint

An exponential optimized for the Itanium-1 processor, with a little
help of Intel (gratefully acknowledged)

use double-extended arithmetic for the first step

use double-double-extended arithmetic for the second step

use fused multiply-and-add everywhere

allow 8KB of tables (Itanii have huge caches)

(timings in cycles, including 37 cycles for a function call)

exp Itanium-1 avg time max time

libultim 193 2439385

mpfr 24540 115152

crlibm portable 295 5633

crlibm using DE, two steps 100 162

crlibm-DE, second step alone 124 126

libm (accurate faithful) 89 89

Overhead of correct rounding is getting negligible

58

Conclusions on our work on crlibm

crlibm is a good framework for implementing correctly
rounded functions

100 pages of documentation/proof
The Mean Implementation Time per Function decreases
(currently down to 2 student×month). Still, the real cost of
implementing a correctly rounded function is coffee
consumption, not performance
Reasonable confidence in the code
Reasonable confidence that we can locate remaining bugs
However the proof is a mixture of C, LaTeX and Maple

Discipline is good
Sun published a correctly rounded library in December 2004,
we found errors in the trigonometric functions in a few hours.
The discipline we set up to manage correctness helps a lot for
performance tuning (including future-proofness ?)

Relaxing portability allows negligible performance cost
I’m off to Intel to sell them this idea.

Correctly rounded elementary functions for the masses are
around the corner.

59

Conclusion

1 Introduction: Floating point ?

2 Floating-point as it should be: The IEEE-754 standard

3 Floating point as it is

4 A few pitfalls

5 ... and how to avoid them

6 Elementary functions

7 Conclusion

60

It’s been said already

We have a standard for FP, and it is a good one

But it is difficult to trust the machine compliance

Anyway even if with perfect compliance, the standard doesn’t
guarantee that the result of your program is close at all to the
mathematical result it is supposed to compute.

But at least it makes it possible to do serious mathematics on
it, and also to try various recipes

It also makes it possible to implement correctly rounded
elementary functions

otherwise it’s mostly useless to you, the users.

61

So, do you trust your computer now ?

“It makes me nervous to fly on airplanes since I know they are
designed using floating-point arithmetic.”

A. Householder

Feel nervous, but feel in control. It’s not dark magic, it’s science.

Any questions ?

62

	Introduction: Floating point ?
	Floating-point as it should be: The IEEE-754 standard
	Floating point as it is
	A few pitfalls
	... and how to avoid them
	Elementary functions
	Conclusion

