Evolutionary Algorithms

High Energy Physics and Computing

Ī'n

CERN Seminar

20 July 2007

Outline

Introduction to evolutionary computation

Evolutionary algorithms

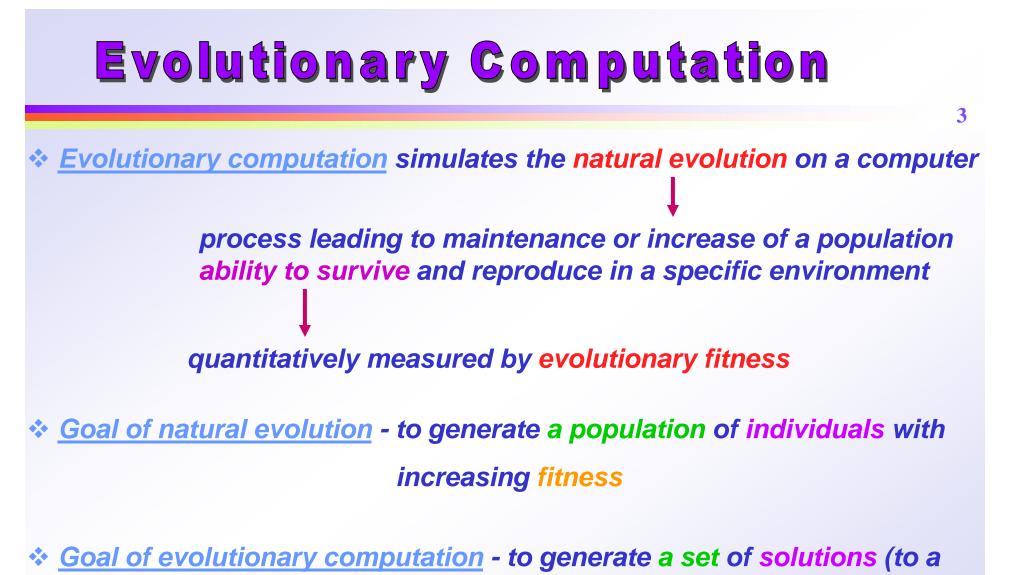
- ✓ solution representation
- ✓ fitness function
- ✓ initial population generation
- ✓ genetic and selection operators

Types of evolutionary algorithms

- ✓ Genetic Algorithms
- Evolutionary Strategies
- ✓ Genetic Programming
- ✓ Gene Expression Programming

Applications in HE Physics and Computing

- ✓ data analysis tasks
- ✓ job scheduling
- Conclusions



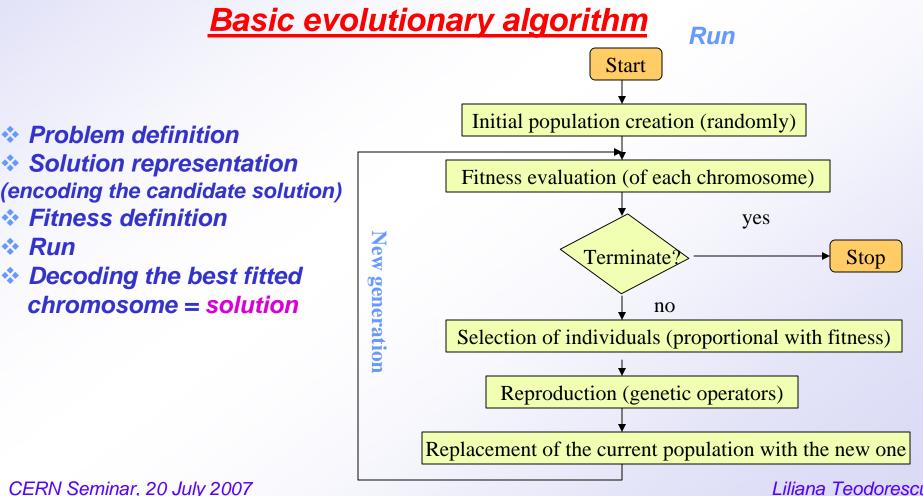
problem) of increasing quality

Terminology

- Individual candidate solution to a problem
 decoding encoding
 - ***** <u>Chromosome</u> representation of the candidate solution
 - **Cene** constituent entity of the chromosome
 - Population set of individuals/chromosomes
 - * Fitness function representation of how good a candidate solution is
 - Senetic operators operators applied on chromosomes in order to create genetic variation (other chromosomes)

Evolutionary Algorithms

Natural evolution simulation - core of the evolutionary algorithms: optimisation algorithms (iteratively improve the quality of the solutions until an optimal/feasible solution is found)



🚸 Run

Liliana Teodorescu

Solution representation

<u>Chromosome</u> – representation of the candidate solution

Each chromosome represents a point in search space

Appropriate chromosome representation

- ✓ very important for the success of EA
- ✓ influence the efficiency and complexity of the search algorithm

Representation schemes

Sinary strings – each bit is a boolean value, an integer or a discretized real number

Real-valued variables
Trees

Fitness function

The most important component of EA !

<u>Fitness function</u> - representation of how good (close to the optimal solution) a candidate solution is

- maps a chromosome representation into a scalar value

 $F: C^{I} \rightarrow \Re$ I – chromosome dimension

Fitness function needs to model accurately the optimisation problem

Used:

✓ *in the selection process*

✓ to define the probability of the genetic operators

Includes:

✓ all criteria to be optimised

reflects the constraints of the problem penalising the individuals that violates the constraints

CERN Seminar, 20 July 2007

Liliana Teodorescu

Initial population

Generation of the initial population:

* random generation of gene values from the allowed set of values (standard method)

Advantage - ensure the initial population is a uniform representation of the search space

 biased generation toward potentially good solutions if prior knowledge about the search space exists.
 Disadvantage – possible premature convergence to a local optimum

Size of the initial population:

small population – represents a small part of the search space

- ✓ time complexity per generation is low
- ✓ needs more generations
- Iarge population covers a large area of the search space
 - ✓ time complexity per generation is higher
 - ✓ needs less generations to converge

Reproduction (genetic) operators

Purpose

- ***** to produce offspring from selected individuals
- to replace parents with fitter offspring

Typical operators

- Cross-over creates new individuals combining genetic material from parents
- <u>mutation</u> randomly changes the values of genes (introduces new genetic material)
 - has low probability in order not to distorts the genetic structure of the chromosome and to generate loss of good genetic material
- Itism/cloning copies the best individuals in the next generation

The exact structure of the operators – dependent on the type of EA

Selection operators

Purpose - to select individuals for applying reproduction operators

Random selection – individuals are selected randomly, without any reference to fitness

Proportional selection – the probability to select an individual is proportional with the fitness value

 $P(C_n) = \frac{F(C_n)}{\sum_{n=1}^{N} F(C_n)}$ $P(C_n) - selection \text{ probability of the chromosome } C_n$ $F(C_n) - fitness \text{ value of the chromosome } C_n$

✓ Normalised distribution by dividing to the maximum fitness - accentuate small differences in fitness values (roulette wheel method)

* <u>Rank-based selection</u> – uses the rank order of the fitness value to determine the selection probability (not the fitness value itself) e.g. non-deterministic linear sampling – individual sorted in decreasing order of the fitness value are randomly selected

Elitism – k best individuals are selected for the next generation, without any modification k – called generation gap

CERN Seminar, 20 July 2007

Liliana Teodorescu

EA vs classical optimisation

	EA	СО
Transition from one point to another in the search space	 ✓ Probabilistic rules ✓ Parallel search 	 ✓ Deterministic rules ✓ Sequential search
Starting the search process	Set of points	One point
Search surface information that guides to the optimal solution	No derivative information (only fitness value)	Derivative information (first or second order)

Liliana Teodorescu

Classes of Evolutionary Algorithms

Genetic Algorithms (GA) (J. H. Holland, 1975)

- Evolutionary Strategies (ES) (I. Rechenberg, H-P. Schwefel, 1975)
- **Genetic Programming (GP) (J. R. Koza, 1992)**
- **Gene Expression Programming (GEP) (C. Ferreira, 2001)**

Main differences

- Encoding method (solution representation)
- Reproduction method

Liliana Teodorescu

Genetic Algorithms

Solution representation

Chromosome - fixed-length binary string (common technique) Gene - each bit of the string

 genes
 chromosome

 1
 0
 0
 1
 1
 0
 1
 1

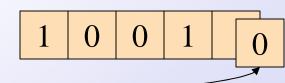
Reproduction

Cross-over (recombination) – exchanges parts of two chromosomes

Point choosen randomly (usual rate 0.7)

Mutation – changes the gene value (usual rate 0.001-0.0001) Point choosen randomly

1 0 0 1 1



CERN Seminar, 20 July 2007

GA for job scheduling

Problem:

- schedule *m* jobs on *n* resources (computer nodes)
- optimisation problem (GRID => large scale optimisation)
- optimisation objective:
 - uni-objective (e.g. job execution time)
 - multi-objective more often (e.g. execution time, flow time, resources utilization etc.)

GA specific to the problem

- solution representation
- special genetic operators

Typical GA for job scheduling

Solution representation

Chromosome – decimal string containing computer nodes

Computer nodes: P1 P2 P3 P4 ... Pn

Chromosome P1 P2 P3 P3 P4 P4 P2 P1

Jobs J1 J2 J3 J4 J5 J6 J7 J8 (position of a gene represents the sequence number of a job)

Fitness function
$$F = \frac{1}{Max (T_1, T_2, ..., T_n)}$$
 T_i - execution time

Reproduction

Genetic operators – typical cross-over, mutation

Disadvantages – high convergence time

CERN Seminar, 20 July 2007

Liliana Teodorescu

represented as genes

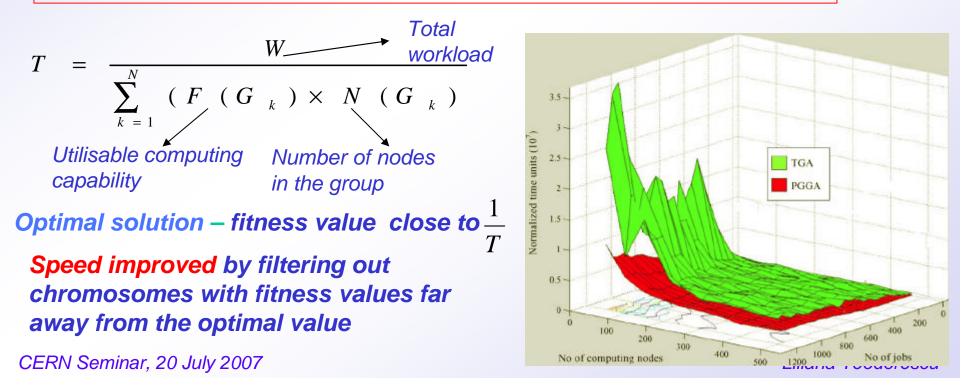
GA for job scheduling - improvements

PGGA – predictable and grouped GA for job scheduling

(M. Li et. al., Future Generation Computer Science 22 (2006) 588-599)

- Classify computer nodes in groups based on their utilisable computing capabilities
- ***** dynamically predict an optimal fitness value using the divisible load theory

optimal solution for job scheduling based on minimisation of the execution time - all the computing nodes finish their jobs at the same time



GA for job scheduling - other improvements

Other versions

Specific genetic operators e.g. mutation:

- move: move a job from a node to another
- swap: interchange the jobs between nodes

Multiple objective optimisation

- optimisation criteria defined hierarchically (e.g first execution time, then the flow time etc.)

- simultaneous optimisation of criteria

Other references

- V. Di Martino, M. Mililotti Sub optimal scheduling in a grid using GA, Parallel Computing, vol 30 (2004) 553-565
- A. Abraham et. al., Nature's heuristic for scheduling jobs on computational Grids, 8th IEEE Int. Conf on Advanced Computing and Communications, 2000
- A.Y. Zomaya, Y.H. The, Observations on Using GA for Dynamic Load-balancing, IEEE Transactions on Parallel and Distributed Systems, vol 12, no 9, 2001

CERN Seminar, 20 July 2007

Liliana Teodorescu

GA in HEP

Mainly for large-scale optimisation and fitting problems

Experimental HEP

- event selection optimisation (A. Drozdetskiy et. Al. Talk at ACAT2007)
- trigger optimisation (L1 and L2 CMS SUSY trigger NIM A502 (2003) 693)
- neural-netwok optimisation for Higgs search (F. Hakl et.al., talk at STAT2002)

Theoretical/phenomenological HEP

- fitting isobar models to data for p(gK+)L (NP A 740 (2004)147)
- discrimination of SUSY models (hep-ph/0406277)
- * lattice calculations (NP B (Pric. Suppl.) 73 (1999) 847; 83-84 (2000)837

Evolutionary Strategies

Based on the concept of evolution of the evolution: the evolution optimises itself

Individual – represented by

- its genetic characteristics
- A strategy parameter models the behaviour of the individual in the environment

Evolution – evolve both the genetic characteristics and the strategy parameter

Solution representation

$$C_n = (G_n, S_n)$$

G_n – genetic material: floating-point values

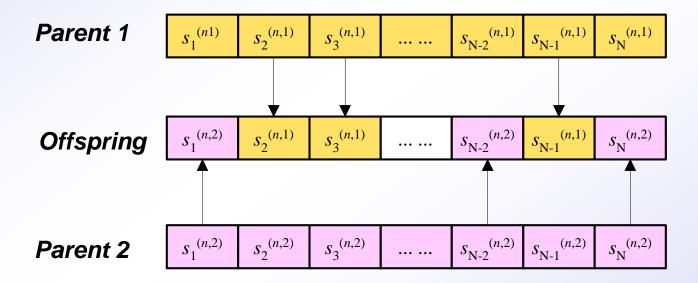
S_n – strategy parameter: standard deviation of a normal distribution associate with each individual

Evolutionary Strategies (cont.)

Reproduction

Cross-over (recombination) - offspring generated from material randomly selected from two parents Recombination of the selected material

✓ discrete – offspring's gene value is the gene value of the parents



intermediate recombination – offspring's gene value is the midpoint between the gene values of the parents

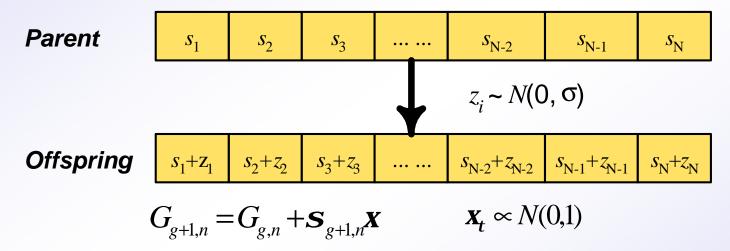
CERN Seminar, 20 July 2007

Evolutionary Strategies (cont.)

Reproduction

Mutation

✓ of the genetic material – add a random number from a normal distribution to the each gene value



✓ of the strategy parameter – modify the standard deviation

$$\mathbf{S}_{g+1,n} = \mathbf{S}_{g,n} e^{\mathbf{t}\mathbf{x}_t}$$
 $\mathbf{x} \propto N(0,1)$ $\mathbf{t} = \sqrt{I}$

Mutated chromosome accepted only if it is fitter !

CERN Seminar, 20 July 2007

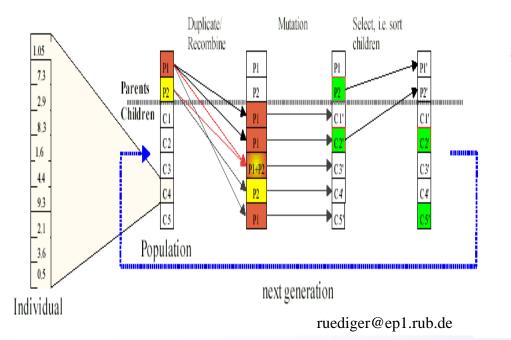
ES in HEP

ES (and GA) used mainly for large-scale optimisation problems

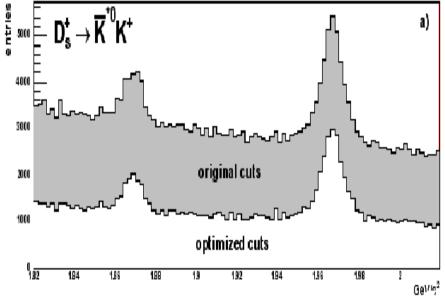
event selection optimisation, NIM A534 (2004) 147

Chromosome: cut values

 $cos(q_H)$, p_{Ds} , mass constraint, vertex fit probability **Fitness function:** $sig^2=S^2/(S+2B)$



45.4% improvement in sig²



CERN Seminar, 20 July 2007

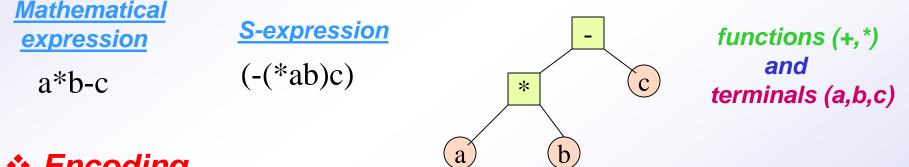
Genetic Programming

GP search for the computer program to solve the problem, not for the solution to the problem.

Computer program - any computing language (in principle) - LISP (List Processor) (in practice)

LISP - highly symbol-oriented

Graphical representation of S-expression



Encoding

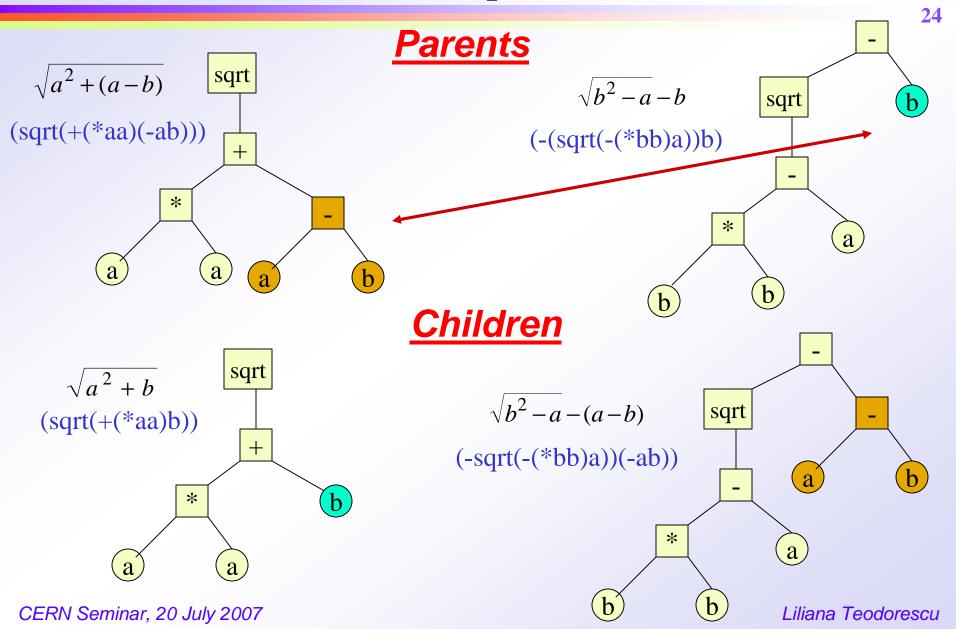
Chromosome: S-expression - variable length => more flexibility - sintax constraints => invalid expressions produced in the evolution process must be eliminated => waste of CPU

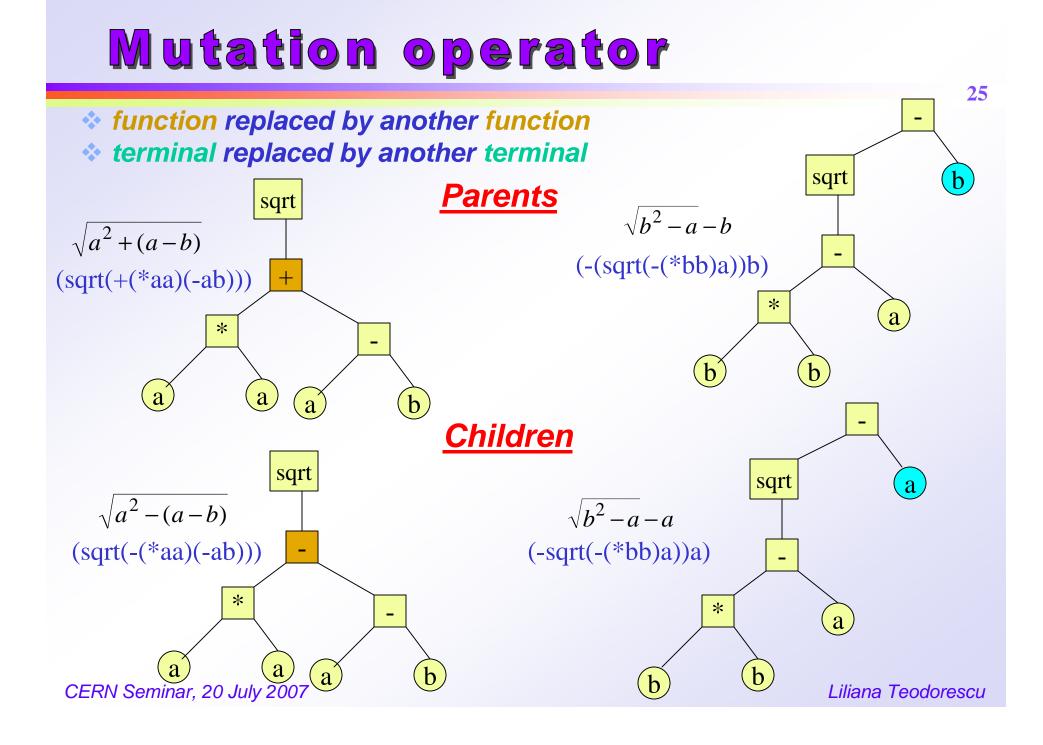
* Reproduction

Cross-over (recombination) and Mutation (usualy)

Liliana Teodorescu

Cross-over operator





GP in HEP

Experimental HEP - event selection

Higgs search in ATLAS (physics/0402030)

D, D, and L, decays in FOCUS (hep-ex/0503007, hep-ex/0507103)

e.g. Search for $D^+ \rightarrow K^+ p^+ p^-$ (hep-ex/0503007)

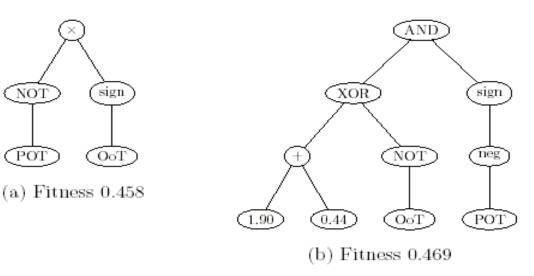
Fitness function (will be minimised) $\frac{S+B}{S^2} \times 10000(1+0.005 \times n)$ n- number of tree nodespenalty based on the size of the tree(big trees must make significant contribution to bkg reduction or signal increase)CERN Seminar, 20 July 2007

GP in HEP (cont.)

Basic procedure:

- 1. Generates (almost randomly) a population of chromosomes
- 2. Loop over events and calculate the fitness for each chromosome
 - Ioop over each event and keep events where the tree evaluates to > 0
 - for survival events, fit signal (S) and bkg. (B)
 - calculate fitness of each chromosome
- 3. Select chromosomes, apply genetic operators and create the next generation
- 4. Repeat for the desired number of generations (40)

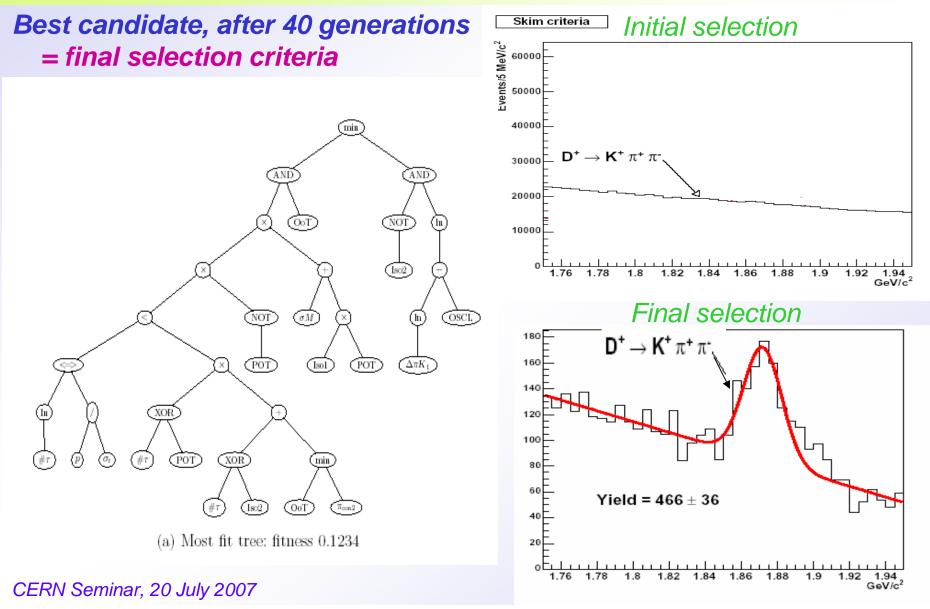
Best fitted chromosomes from generation 0



Inter point in target (POT<0) and Decay vertex out of target (OoT>0)

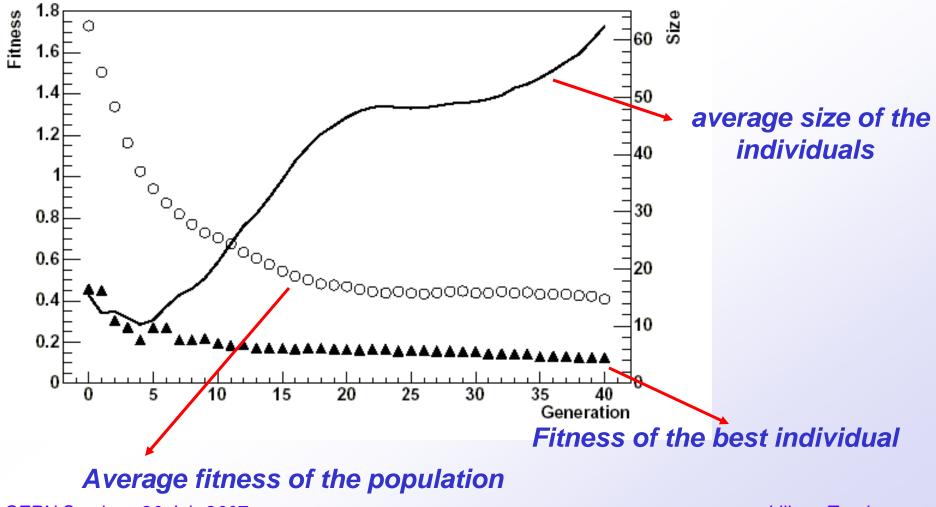
Liliana Teodorescu

GP in HEP (cont.)



GP in HEP (cont.)

Evolution graph



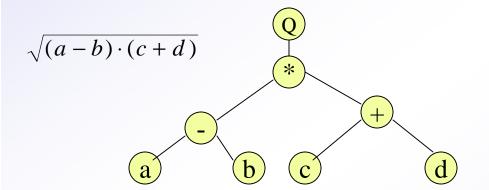
CERN Seminar, 20 July 2007

Liliana Teodorescu

Gene Expression Programming

search for the computer program that solve the problem (as GP)
 works with two entities: chromosomes and expression trees
 Solution representation

Candidate solution represented by an expression tree (ET) (similar with GP tree)



ET encoded in a chromosome: read ET from left to right and from top to bottom

> Q*-+abcd **Q means sqrt**

Decoding the chromosome (translates the chromosome in an ET)
✓ first line of ET (root) – first element of the chromosome
✓ next line of ET – as many arguments needed by the element in the previous line

CERN Seminar, 20 July 2007

GEP (cont.)

Chromosome – has one or more genes of equal length

Gene – head: contains both functions and terminals (length h) - tail: contains only terminals (length t)

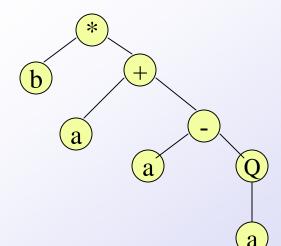
t=h(n-1)+1 *n* – number of arguments of the function with the highest number of arguments

e.g. set of functions: Q,*,/,-,+ set of terminals: a,b

n=2; h=15 (choosen) =>t =16 => length of gene=15+16=31

*b+a-aQab+//+b+babbabbbababbaaa

ET ends before the end of the gene!



Liliana Teodorescu

GEP (cont.)

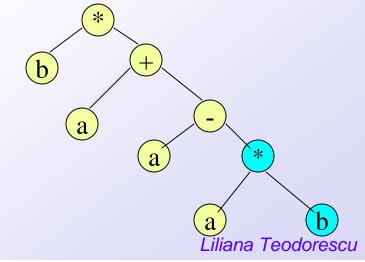
Reproduction

Genetic operators applied on chromosomes not on ET => always produce sintactically correct structures!

- Cross-over exchanges parts of two chromosomes
- Mutation changes the value of a node
- Transposition moves a part of a chromosome to another location in the same chromosome

e.g. Mutation: Q replaced with * *b+a-aQab+//+b+babbabbbababbaaa

*b+a-a*ab+//+b+babbabbbababbaaa



CERN Seminar, 20 July 2007

GEP in HEP

GEP for event selection

- L. Teodorescu, IEEE Trans. Nucl. Phys., vol. 53, no.4, p. 2221 (2006) also talks at CHEP06 and ACAT 2007
 - cuts/selection criteria finding
 - Classification problem (signal/background classification)
 - statistical learning approach

Data samples:

- Monte-Carlo simulation from BaBar experiment
- * 8 or 20 event variables used in a standard analysis for $K_s \rightarrow p^+ p^-$
- Functions and constants to be used in the classification rules
 - ✤ 18 functions logical functions => cut type rules
 - 38 functions common mathematical functions
 - constants floating point constants (-10,10)

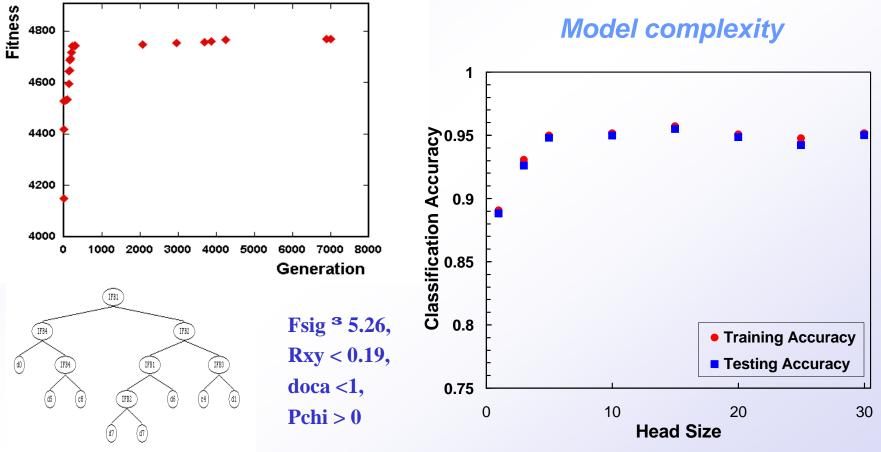
Fitness function – number of events correctly classified as signal or bkg. (maximise classification accuracy)

CERN Seminar, 20 July 2007

Model evolution

Data sample: S/N =0.25; 18 functions, 5000 events

No. of genes = 1, Head length =10



Classification Accuracy = 95%

Liliana Teodorescu

Classification rules

GEP analysis – optimises classification accuracy Data sample: S/N =0.25, 18 functions, 5000 events

Head	Selection criteria
1	Fsig ³ 9.93
2	Fsig ³ 8.80, doca <1
3	Fsig > 3.67, Rxy £ Pchi
4	Fsig > 3.67, Rxy £ Pchi
5	Fsig ³ 3.63, Rz £ 2.65, Rxy < Pchi
7	Fsig ³ 3.64, Rxy < Pchi, Pchi > 0
10	Fsig ³ 5.26, Rxy < 0.19, doca <1, Pchi > 0
20	Fsig > 4.1, Rxy £ 0.2, SFL > 0.2, Pchi > 0, doca > 0, Rxy £ Mass

Cut-based (standard) analysis – optimises signal significance

Fsig ³ 4.0 Rxy £ 0.2cm SFL ³ 0cm Pchi > 0.001	Reduction S: 15% B: 98%	doca £0.4cm Rz £2.8cm	Reduction S: 16% B: 98.3%	
CERN Seminar, 20 July	2007			Liliana Teodorescu

Conclusions - final remarks

Evolutionary algorithms in HE Physics & Computing

- sed but not extensively at present
- solutions
- main desadvantage high computational time
- prospects for changes new, faster algorithms, more computing power



Conclusions - final remarks

Used/developed by who ? ... Your colleague !!

Yellow Report (this summer) – lectures from iCSC

Computational Intelligence in HEP * Statistical learning – Anselm Vossen * Machine learning – Jarek Przybyszewski * Support Vector Machine – Anselm Vossen * Neural Networks - Liliana Teodorescu * Evolutionary Algorithms – Liliana Teodorescu * Data Mining – Petr Olmer

Computing topics * Parallel Programming – Marek Biskup * Database performance pitfalls – Michal Kwiatek * Debugging techniques – Paolo Adragna * Code review – Gerhard Brandt

CERN Seminar, 20 July 2007