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Abstract

In this short article we summarize the FPP package and
the tracking code PTC which is crucially based on FPP.
PTC is remarkable for its use of beam structures which take
into full account the three dimensional structure of a lat-
tice and its potential topological complexities such as those
found in colliders and recirculators.

FULLY POLYMORPHIC PACKAGE: FPP

FPP overloads in Fortran90 [1] the famous “DA-
package” [2] of Berz. More precisely it overloads the
package which Berz developped at the now defunct SSC-
Central design group. It also overload a library based on
Berz’s package called Lielib! and developped by Forest.

FPP most salient feature is to create a Taylor-Real poly-
morphic type which changes shape at execution time. To
do so using Berz’s original package, we use a piece of
code based on a Fortran77 prototype of J. Bengtsson. In
fact, polymorphism at execution time is an idea of Bengts-
son. This is to be contrasted with interpreted polymor-
phism which is the mechanism which underpins the code
COSY-INFINITY [4] of Berz. Both are valid ideas and can
even be combined simultaneously. This is not done in FPP.

The user of FPP writes a standard (symplectic) integra-
tor [5, 6, 7] which simply pushes particles through a lattice.
If the real variables “real(8)” are replaced everywhere by
a new type called REAL_8 then Taylor series can be pro-
duced thanks to the underlying package of Berz.

It should be pointed out that our decision to extract Tay-
lor series directly from an integrator rather than using tech-
niques such as those found in COSY-INIFINITY is dictated
by the physics of large (circular) machines. The vast ma-
jority of people [8, 9, 10, 11, 12, 13, 14, 15, 16] in that field
prefer to use integrators, even with rather poor models, than
to compute some high order Taylor maps. Thus in our field,
the production of Taylor maps is for analysis mainly (com-
putation of lattice functions for example), rather than for
tracking particles. There are a lot of applications where the
techniques pioneered by Berz recently (interval arithmetic,
validated computation, Taylor models, etc...) are more de-
sirable than bone headed integration. However we will
stick here to what we often refer to as the Talman view of
accelerator simulation: take a symplectic model and stick
to it fanatically. Nevertheless, one can only lament that the
present work was not done in concert with Berz’s most re-
cent tools. Perhaps this situation can be corrected in the
near future: one can even imagine COSY-INFINITY being

*Work supported by KEK and Kasokukishoureikai.
1The initial theory was described in reference [3]

called from Fortran90 combining compiled and interpreted
polymorphism.

POLYMORPHIC TRACKING CODE: PTC

PTC [17] may appear novel in two ways. First it uses
FPP for all perturbative calculations. Secondly it has novel
structures to fully exploit the magnet/object in a dynamical
setting.

The usage of FPP in PTC is by far the more ancient and
well known aspect of PTC. One of the author has been
pushing for the inclusion of “DA” and the related Lielib in
“kick codes” since the days of the defunct SSC-CDG. Tay-
lor polymorphism is also an old story by now with Berz
and Bengtsson as main proponents.

The development of structures more adapted to the math-
ematics of “s”-tracking is far less understood and more re-
cent except for the fact that Forest and Bengtsson were al-
ready discussing these things in the early days of the C++
disaster known as CLASSIC. In part we did not want to
get involved with this project precisely because their class
design was not motivated by the underlying mathematical
structure of “s” or magnet based tracking.

We will now summarize very briefly what can be done
with FPP in PTC or for that matter in any other integrator
code equipped with FPP.

FPP in PTC

PTC is above all an integrator. It pushes a particle from
one magnet to the next by integrating one step at a time.
Thus, in the light of the previous discussion, if equipped
with FPP, PTC can produce a Taylor map. For example,
the following command tracks the ray X = (0,0, 0,0, 0,0)
around a ring from position 1 back to position 1:

REAL(8) X(6)
TYPE(REAL_8) Y(6)

X=0.DO
Y=X
CALL TRACK(MY_RING,Y,1,DEFAULT)

However, the following command will produce a Taylor
series map using Berz’s package:

TYPE(REAL_8) X(6)
TYPE (DAMAP) IDENTITY

X=0.DO
IDENTITY=1
Y=IDENTITY+X

! MAKES A MAP IDENTITY

CALL TRACK(MY_RING,Y,1,DEFAULT)



More remarkably is the way the full nonlinear Courant-
Snyder [18, 19, 7] theory looks in this overloaded environ-
ment. In the map based theory, one normalizes first the
one-turn map around the closed orbit and then propagates
the canonical transformation obtained through normaliza-
tion:

TYPE(REAL_8) CLOSED_ORBIT(6)
TYPE(DAMAP) IDENTITY
TYPE (NORMALFORM) NORMAL

IDENTITY=1 ! MAKES A MAP IDENTITY
Y=IDENTITY+CLOSED_ORBIT

CALL TRACK(MY_RING,Y,1,DEFAULT)
NORMAL=Y ! THE MAP Y IS NORMALIZED (1)
Y=CLOSED_ORBIT+NORMAL%ZA_T ! A_T NORMALIZES Y AT I=1

DO I=1,MY_RINGY%N

CALL TRACK(MY_RING,Y,I,I+1,DEFAULT) ! (2)

!l HERE Y CONTAINS THE CANONICAL TRANSFORMATION
! AT EVERY POSITION I AROUND THE RING

!'1! LATTICE FUNCTIONS OF ALL SORTS CAN NOW

!'1! BE EXTRACTED FROM Y USING OPERATORS OF FPP

!l FOR EXAMPLE BETA_X_1, THE DEPENDENCE OF THE
!l BEAM SIZE ON THE FIRST INVARIANT IN THE RIPKEN
!l FORMALISM

BETA_X_1= (Y(1).SUB.’10?)**2+(Y(1).SUB.’01’)**2 ! (3)
!'1! BETA_X_1 IS COMPUTED USING OPERATORS DEFINED IN
!l THE FPP SYNTAX

ENDDO

In the above loop, the syntax mimicks the theory al-
though certain abuse of language are introduced in PTC
proper. For example, NORMAL=Y strickly speaking makes
no sense since one can only normalize “DAMAPS” and Y
is a collection of six polymorphs. For completeness, we list
the mathematical expressions which are represented by the
above FORTRAN code:

e The map is normalized or line (1)

ro o= a;lomloal (D)

e The canonical transformation is tracked on line (2).
Notice that the polymorphs are first initialized as the
closed orbit plus the initial canonical transformation
A T expressed in variables expressing deviation from
the closed orbit.

bi = mijom 2

The map b; diagonalizes the one-turn map at the discrete
location s = . Therefore all the usual and well as less
usual lattice functions can be extracted from it. For exam-
ple, linear theory shows that the average of the function 22
denoted by < 22 > is given by

(z*) > Buk (ek)
k

AT g1 + AT gy 3)

The computation of 3,1 is done in line (3). This uses one
of the numerous operators provided by FPP. For example,
the operator . SUB. can be used to extract the coefficient of
a monomial from a Taylor series (or a polymorph). If for
example

Y = 5.02% + 2.00172 4

then
Y.SUB./11’ = 2.0 (5)

and
Y.SUB.’20’ = 5.0 (6)

They are tons of other operators related to the plain
manipulation of Taylor series as well as types related to
DAMAPS and their various Lie representions. These rep-
resentations include the normal form, the Dragt-Finn and
inverse Dragt-Finn as well as the one-Lie exponent repre-
sentation. Routines overloading the equal sign (“=") permit
the conversion from one type of map to the other.

Most of these things are documented on the Web site:
http://mad.web.cern.ch/mad/PTC _proper/.

PTC proper

Most if not all tracking codes germane to accelerator
physics view the world as a collection of magnet propa-
gators. That is to each magnet labelled by an index “i”
they associate a propagator m;. This propagator moves the
ray from a surface at the beginning of the magnet to one
at the end of the magnet. In Fig. 1 we depict two possible
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Figure 1: Magnet with forward and reversed propagators.

propagators for the ‘" magnet: one forward and one back-
ward through the magnet. Standard codes will then define
a beam line as an ordered sequence of magnets:

Line = (Ml,MQ,'”,MN) (7)

Normally we think of the line of Eq. 7 as a series of forward
propagators such as those depicted on Fig. 1. For example,



if the propagator through magnet A, is mg1, then it is as-
sumed that the map going through the beam line of Eq. 7
is:

m¢y=MN-1NO---O0M12 O0Mo1 , (8)

The total map m, in concert with the frames attached to
the magnet (see Fig. 1), produce an implicit positioning of
the beam line in the machine. In reality, magnets should
have no implied relative position; the frames of reference
are mathematical artefacts of the “s” representation which
neither the particle nor the original Lorentz equation cares
about. Thus the question arises: if we want to exploit the
map attached to a magnet and free it from the tyranny im-
posed by the definition of Eq. 7, how should we define a
beam line?

The answer is simply that the beam line is a collection
of “containers” called fibres in PTC by anology with the
mathematics which supports this entire “s”-tracking appa-
ratus. The fibres represent the variable “s” in discretized
form. The fibre, as a computer science object, has a pointer
to three distinct objects: to the standard magnets M;, to a
series of patches (element of the translation-rotation group)
and to some frame of references (a chart) locating the ideal
position of this magnet in space. The need for fibres is
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Figure 2: Recirculator problem.

clearly displayed in Fig. 2. Magnet 1 is the beam separa-
tor of a recirculator. At high energy, the particle goes from
magnet 1 to magnet 2. Then it is decelerated in a linac pre-
ceding magnet 1 and thus it is deflected into magnet 3. We
must notice a couple important points:

e The magnet 1 is traversed twice. If we described the
recirculator as a sequence of distinct magnets, the sec-
ond time around it must reappear as a clone of itself
on the computer. This is not correct. It is the same
magnet. A link list if magnets would definitely fail
miserably since the same magnet would follow mag-
net 1. This is the present MAD-X setup. An array of
pointers to magnet would potentially solved this prob-
lem but the not the following issue.

o If we assume that the frame of references between
magnet 1 and magnet 2 are smoothly lined up, then it

is certainly not that case between magnet 1 and mag-
net 3. In fact in standard codes, we may also have
problems with the reference energy between 1 and 3.

We see that no matter how we slice it, this problem can-
not be solved by retaining the magnet and its associated
propagator(s) as the element of a beam line.

The solution of PTC is to represent the beam line, as we
said, as a linked list of containers called fibres. It is just
the discretized variable “s”. The first time around, magnet
1is fibre s = 1 and magnet 2 is in fibre s = 2. These
magnets (ignoring the drift for this discussion) are lined up
so that no special patching is required: they are in the stan-
dard MAD position. The next time around, let us say that
magnet 1 is in the fibre s = 100. It is a different fibre and it
contains a patch to the standard frame of reference of mag-
net 3. On Fig. 2, this patch is made of a rotation of angle
« around the vertical axis followed by a translation of A in
the horizontal transverse direction. Since fibre s = 1 and
s = 100 point to the same magnet (# 1), all changes that
affect # 1 are correctly taken into account without hacking
the code. Obviously fibre s = 100 points to fibre s = 101
which contains magnet 3. Thus the tracking follows the
correct sequence. Finally since fibres s = 1 and s = 100
are different, they can contain different patches. The pas-
sage from magnet 1 to magnet 3 is definitely not compatible
to a standard MAD survey.

Of course by default all the patches of PTC are initialized
as the identity map when a beam line is created. This in-
sures that when a standard sequence is passed from MAD-
X, the resulting beam line is what one would expect from a
traditional code.

BEYOND AND INSIDE THE FIBRE

It makes sense in an accelerator dominated by single par-
ticle dynamics to produce computer objects which are tan-
tamount to the usual magnet. This object will know how
to propagate a ray and how to draw itself. These functions
will respond to a misalignment of the magnet within the
fibre as well as a total repositioning of the fibre. Further-
more, consistent with this style of programming, one does
not allow oneself to look or change data inside the object.
The magnet’s physical and mathematical integrity is pre-
served.

Unfortunately there are lots of reasons why we would
like to have access to the inside of a magnet. First of all
internal tracking data such as rays or lattice functions are
often wanted by designers. This is reflected in the annoying
practice of slicing a magnet in two equal parts at a symme-
try point of the lattice.

Secondly and most importantly we have to include col-
lective effects. Beam-beam, space charge and wake effects
do not choose to act at the arbitrary entrance and exit sur-
faces of a fibre! So ideally we need time based tracking
which runs counter to a magnet oriented description. How-
ever if we have an integrator we can theoretically interrupt



tracking at any integration step; this provides us with a first
order accurate location of the constant time surface.

For the purpose of looking inside the fibre, we split the fi-
bre in five distinct regions which we call integration nodes:
an entrance patch, an entrance fringe field, the body of the
magnet, an exit fringe field and an exit patch. Thus when a
particle enters a fibre, it undergoes the following transfor-
mations:

1. The entrance patch node consists of an actual patch
which connects the geometry of the preceding fibre
with the present one. Then follow the misalignment
operators which are mathematically of the same na-
ture as the patches. Finally a vertical tilt which is used
in vertical magnets.

2. The entrance fringe node contains approximate fringe
effects, various obscenities such as wedges and also
occasionally the conversion between canonical and
non-canonical variables.

3. “NST” integration steps going through the magnet.
Often these steps are identical; sometimes they are
not.

4. The exit fringe node which is the “reverse” of the en-
trance fringe node.

5. The exit patch node which is needed to complete the
placement of a fibre and the misalignment of magnet
within the fibre.

Thus we conclude that a fibre in PTC is made of 4+NST
integration nodes.

The Node Layout

Just as in the standard PTC the lattice is a linked list of
fibres, the node layout is a linked list of nodes. The data in
the node reside on the fibres themselves. In other words the
nodes do not contain new data; they have no existence of
their own. This means that changes affecting the magnets
(field changes, etc...) and all changes affecting the fibres
(displacements of the fiducial position) are carried over to
the nodes faithfully.

Survey of the Node Layout: 3d plots

The survey command of PTC normally locates the fibre
and the magnet within the fibre. If a user has placed fibres
in a bizarre (hon-MAD) location, the survey command will
leave the fibres unchanged if the patches are correctly com-
puted. Thus it is a command useful to check the patching
algorithm.

However it is clear that the position of each individual
nodes, particularly the NST nodes in the body of the mag-
net, depend on the general architecture of the integrator
used for that magnet. The survey command for the node
layout computes the frame of reference corresponding to
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Figure 3: The exposed fibre.

each node. Obviously it is a command which must be tai-
lored to each new magnet model introduced by the pro-
grammer. This command truly permits us to locate a tra-
jectory in 3d. Discontinuous changes of coordinates such
as tilts are thus taken into account.

Collective effects:; extension of the coordinates

The nodes allow us to look at any point in the layout.
One of the most important applications is to permit collec-
tive forces. Moreover we can extend the coordinates of a
particle to permit first order time based tracking within the
higher order “s” framework. To do so, we add to the parti-
cle two coordinates:

Z: (:Eapxayapyatapt; 55apn) (9)

The coordinate “ds” is the distance from the beginning of
the integration node measured in the coordinate “s” use by
the integrator. The variable “p,,” is a pointer to the integra-
tion node in which the particle finds itself at time “¢.” So
during normal PTC s-based tracking ds is always zero. In
a time tracking mode a drift is assumed between nodes to
estimate the time of a particle; the result §s is computed.
Since inverse drifts are exactly known, this reduces to the
normal s-based tracking when collective effects are absent.
One immediate application is the tracking of several
macro-particles in a recirculator with important wake field
effects between the macro-particles: time ordering of the
bunches is crucial and painlessly done in our framework.

CONCLUSION

There is an obvious philosophical choice which under-
pins all magnet based tracking codes. We emphasize the
maps attached to a magnet. One of the author realized
in the days of SSC-CDG that the discontinuities of such



a theory makes our tracking codes mathematically incom-
patible [18, 20] with a standard Courant-Snyder theory. We
cannot on an arbitrary trajectory computed by an s-based
tracking code define a Frenet system of tangent, normal
and binormal vectors. This is mathematically impossible
because of the discontinuous boundaries which are present
in our models. Thus a theory based on finite maps is the
only fully self-consistent theory; in fact in the presence of
patches and misalignments it is the only logical choice. In
the limit of maps representing tiny nodes (ds ~ 0) and
smooth fields, then we regain the full Hamiltonian struc-
ture.

Others have noticed independently [19, 21, 22] this dis-
continuous aspect of the theory and constructed mathemat-
ical tools to handle it. However the first author of this paper
always believed that only a serious computer implementa-
tion would allow these ideas to propagate. Thus emerged
our early collaboration with Berz and the resulting FPP
package. This allows the computation the self-consistent
lattice functions (linear and nonlinear) in a painless way.

Although time based tracking is more fundamental, it
has been rejected by accelerator physicists at the onset.
This makes perfect sense in a system dominated, at low
current, by independent magnets for design and simulation
reasons. But, in this paper, we have shown that if a code
possesses the right structures for its beam line “classes”
then one regains time tracking. We recognize however
that this tracking is first order in e dt where € represent the
strength of the collective effect.

The combination of Taylor tools (Berz package, Lielib
and FPP) and modern computed structures is a powerful
way to represent machines of all sorts. The linking of this
FPP/PTC conglomerate with MAD-X adds a extra-layer
of user friendliness. The only thing missing is interpreted
polymorphism which would allow a user to operate on the
machines and compute perturbative things from an input
file. This could be achieved only by writing an interpreter
for FPP or by relinking the full FPP with the more powerful
“DA” tools of an extended COSY-INFINITY.
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