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Abstract

Using the Bjorken-Mtingwa recipe [1] we derive general formulae for the three in-
trabeam scattering (IBS) growth rates, including non-ultrarelativistic terms and ver-
tical dispersion. These formulae have been implemented in the most recent version
of MAD-X. An application to the LHC illustrates the effect of crossing angles and
detector £elds on the vertical IBS growth rate. The increase of all three IBS growth
rates for various LHC upgrade scenarios is also calculated. A third example, from the
CLIC damping ring, demonstrates the importance of the spurious vertical dispersion
generated by errors for the vertical IBS growth rate. Some limitations of this approach
to intrabeam scattering are discussed.

Geneva, Switzerland

January 9, 2006



1 Introduction

The motivation for a revision of the MAD-X intrabeam scattering formulae is twofold.
First, CERN experiments at low or medium energy were reported to disagree with the MAD

predictions [2]. As a mitigation, Michel Martini recommended the implementation of the Martini-
Conte formulae [3], which are a non-ultrarelatvistic generalization based on the general Bjorken-
Mtingwa formalism [1].

Second, neither the Bjorken-Mtingwa nor the Conte-Martini formulae account for nominal or
spurious vertical dispersion, though the latter is thought to make the dominant contribution to the
vertical IBS growth rate. Neglecting the vertical dispersion has given rise to peculiar results, such
as predicting the shrinkage of the vertical emittance, which are not observed in reality. In lin-
ear collider damping rings, intrabeam scattering determines the £nal vertical emittance and when
modelling the damping-ring performance it must properly be accounted for.

In this report we re-derive extended formulae for the emittance growth due to intrabeam scatter-
ing, following the general recipe of Bjorken and Mtingwa, and we con£rm the expressions for the
longitudinal and vertical growth rate given by Conte and Martini, but we obtain a slightly different
result for the horizontal plane. Next, we extend the formulae in a straightforward manner so as to
include the effect of the vertical dispersion. Without vertical dispersion, the vertical growth rate is
negligible and negative. Including even a tiny amount of vertical dispersion gives a non-negligible
positive growth rate.

Inspection of the original MAD-X code revealed, unexpectedly, that the Conte-Martini formu-
lae [3] were already implemented (presumably they had been copied from the ZAP code [4]), and
not the original ones of Bjorken and Mtingwa [1]. We corrected these formulae for the horizontal
plane and added the terms required for the vertical dispersion.

We note the existence of an alternative formalism of intrabeam scattering, developed earlier
by Piwinski [5], as well as of a ‘modi£ed’ Piwinski formulation proposed by Bane [6], in which
D2
x/β is replaced by the dispersion invariant. Bane has also shown that in the limit of high beam

energy the modi£ed Piwinski formalism gives the same results as the Bjorken-Mtingwa one. We
have opted for the Bjorken-Mtingwa formalism as basis for calculating intrabeam scattering in
MAD-X, since a different variant of this formalism had already been adopted for MAD-8 as well
as for an earlier version of MAD-X.

2 Calculation Recipe

The derivation starts with expression (3.4) in [1] for the emittance growth rate in the direction d:

1

τd
=
π2r2

0vcm
3N(log)

γΓ

〈

∫ ∞

0

dλ λ1/2

[det (L+ λI)}1/2
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TrLd Tr
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1

L+ λI

)

− 3 TrLd
(

1

L+ λI

)}

〉

,

(1)
where d = x, y, or l, r0 is the classical particle radius, vc the speed of light, m the particle mass, N
the number of particles per bunch, (log) ≡ ln (rmax/rmin) a Coulomb logarithm — with rmax de-
noting the smaller of σx and the Debye length and rmin the larger of the classical distance of closest
approach and the quantum diffraction limit from the nuclear radius, typically assuming values of
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(log) ≈ 15 − 20 —, γ the Lorentz factor, and, for a bunched beam, Γ = (2π)3(βγ)3m3εxεyσδσz
the 6-dimensional invariant phase space volume of a bunched beam (corrected by a factor of

√
2

[7]) 1 ,
L = L(h) + L(l) + L(v) , (2)

with

L(h) =
βx
εx







1 −γφx 0
−γφx γ2Hx/βx 0
0 0 0





 , (3)

L(l) =
γ2

σ2
δ







0 0 0
0 1 0
0 0 0





 , (4)

and, generalizing the Bjorken-Mtingwa theory to the case of nonzero vertical dispersion,

L(v) =
βy
εy







0 0 0
0 γ2Hy/βy −γφy
0 −γφy 1





 . (5)

In the above expressions, φx,y and Hx,y are de£ned as

φx,y ≡ D′
x,y −

β′x,yDx,y

2βx,y
, (6)

and

Hx,y ≡
D2
x,y + β2

x,yφ
2
x,y

βx,y
, (7)

with Dx,y the horizontal or vertical dispersion, D′
x,y its slope, βx,y the beta function, and αx,y the

alpha Twiss function.
Bjorken and Mtingwa [1] proceeded by solving (1) with zero vertical dispersion, and neglecting

βx/εx and βy/εy relative to (γDx)
2/(εxβx), (βx/εx)γ2φ2

x, and γ2/σ2
δ . Comte and Martini [3] kept

the terms neglected by Bjorken and Mtingwa, which are important for γ < 10. We also keep the
non-ultrarelativistic terms, and, in addition, we include the vertical dispersion.

3 IBS Growth Rates

For all three cases, namely Bjorken-Mtingwa, Conte-Martini, and the generalized expressions de-
scribed in this report and now implemented in MAD-X, the three growth rates obtained from (1)
can be written in the general form:

1

τx
=

π2r2
0vcm

3N(log)

γΓ

[

γ2Hx

εx

]

∫ ∞

0

dλ λ1/2 [axλ+ bx]

(λ3 + aλ2 + bλ+ c)3/2
,

1For an unbunched beam, (1) also applies, if one uses Γ = 4π5/2(βγ)3m3εxεyσδC, with C the ring circumference.
In this case, Γ is equal to the 6-dimensional invariant phase space volume divided by

√
2.
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1
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δ

]

∫ ∞
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,

1

τy
=

π2r2
0vcm

3N(log)

γΓ

[

βy
εy

]

∫ ∞

0

dλ λ1/2 [ayλ+ by]

(λ3 + aλ2 + bλ+ c)3/2
. (8)

The coef£cients a and b of the denominator are the same for all three planes. The eight coef£cients
a, b, ax, bx, al, bl, ay, and by depend on the approximation. They are listed in Table 1 for all
three approaches, i.e., Bjorken-Mtingwa’s ultrarelativistic limit, the Conte-Martini formulae, and
the expressions including vertical dispersion newly derived. In the limit of vanishing vertical
dispersion, the latter reduce to the longitudinal and vertical IBS emittance growth rates of Conte
and Martini [3]. However, the new expression for the horizontal growth rate differs in that two
terms of Conte and Martini, one each for ax and bx — in Table 1 highlighted by bold face and
curly brackets —, are absent in our re-derived theory. For the example applications which we
present below the contribution from these two terms turns out to be negligible.
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Table 1: Coef£cients for the IBS growth rate expressions, Eq. (8), in the three formalisms. In the
limit of zero vertical dispersion, the right column reduces to the Conte-Martini expressions except
for ax and bx, where the two terms in curly brackets and bold face are not reproduced.

Bjorken-Mtingwa [1] Conte-Martini [3] this paper & new MAD-X
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(
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4 First Example: LHC

In the LHC, vertical dispersion is generated by the crossing angles at IP1 and IP2, and by the
detector £elds of ALICE and LHC-b plus correction bumps. The peak vertical dispersion in the
arcs is close to 0.2 m. Figures 1 and 2 show the nominal LHC dispersion at top energy. Table 2
lists IBS growth rates computed by a previous MAD-X version, which implemented the Conte-
Martini formulae, and those by the new MAD-X version, which includes vertical dispersion. In
the cases with crossing angles and detector £elds, there is a large difference in the vertical growth
rate between the two MAD-X versions. Namely, the vertical growth time changes from−2.9×106

h (damping) for the old version of MAD to +436 h for the modi£ed MAD-X routine where the
effect of vertical dispersion is taken into account. Figure 3 shows the local vertical IBS growth rate
around the ring circumference, computed by the new MAD-X version for the LHC with crossing
angles and detector £elds. The highest growth rates are found in the interaction regions 1 and 5.

Table 2: LHC IBS growth rates at 7 TeV computed with the old and new versions of MAD-X with
and without crossing angles & LHCB/ALICE detector £elds. The full crossing angle in IP1 and
IP5 is 285 µrad.

without with
crossing angles & detector £elds

old MAD-X new MAD-X old MAD-X new MAD-X
τl [h] 57.5 57.5 57.5 58.6
τx [h] 103.3 103.3 102.5 104.2
τy [h] −2.9× 106 −2.9× 106 −2.9× 106 436.1
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Momentum offset =    0.00 %
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Figure 1: The horizontal and vertical dispersion functions in the LHC at top energy, with nominal
crossing angles and zero separation at IP1, IP2, IP5 and IP8, and the ALICE and LHCB detector
£elds turned on.
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Figure 2: The horizontal (left) and vertical dispersion (right) in units of metre as a function of the
position in metre, for the LHC at top energy, with nominal crossing angles and zero separation at
IP1, IP2, IP5 and IP8, and the ALICE and LHCB detector £elds turned on.
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Figure 3: Local vertical IBS growth rate in units of 1/h as a function of position in m around
the ring, for the LHC at top energy, with nominal crossing angles at IP1, IP2, IP5 and IP8, zero
separation, and the ALICE and LHCB detector £elds turned on.
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5 Second Example: LHC Upgrade

Upgrades of the LHC are being considered which increase the peak luminosity by a factor of ten
to 1035 cm−2s−1. Various upgrade scenarios exist, which, e.g., foresee an increased bunch charge,
larger crossing angles, smaller longitudinal emittances, and higher rf voltages or higher rf frequen-
cies. The IBS growth rates tend to get signi£cantly larger in many of the scenarios considered. In
case the injection energy into the LHC can be raised by new injectors (“SuperSPS”), a larger trans-
verse normalized emittance may be accepted, which would allowing keeping a constant brightness
Nb/(γεx,y) at higher bunch intensity. Table 3 lists IBS growth rates calculated with the new version
of MAD-X for different upgrade options and parameter combinations. The second case illustrates
that for increasing crossing angles the vertical growth rate soon becomes comparable to the hori-
zontal one.

Table 3: LHC IBS growth rates computed with the new version of MAD-X for the nominal LHC
and for various LHC upgrade scenarios. All cases refer to a beam energy of 7 TeV, and include
crossing angles as well as LHCB/ALICE detector £elds. If not noted otherwise, the nominal
LHC parameters are assumed, namely a bunch population of Nb = 1.15 × 1011, a transverse
normalized emittance of γεx,y = 3.75 µm, an rms bunch length σz = 7.55 cm, an rms energy
spread σδ = 1.129 × 10−4, a longitudinal emittance ε|| = 2.5 eVs, an rf voltage Vrf = 16 MV at
400 MHz, and full crossing angles of θc = 285 µrad in IP1 and IP5.

case τl [h] τx [h] τy [h]

nominal 58.6 104.2 436.
Nb = 1.7× 1011, ε|| = 1.75 eVs, σz = 3.8 cm, 46.4 42.5 77.3
σδ = 1.55× 10−4, Vrf = 120 MV,
θc = 445 µrad
Nb = 2.3× 1011, other values nominal 29.2 51.9 217.5
Nb = 2.3× 1011, γεx,y = 7.5 µm 72.5 254.2 1075
Nb = 2.3× 1011, ε|| = 1.25 eVs, σz = 5.2 cm, 9.3 32.8 138.3
σδ = 7.86× 10−5

Nb = 2.3× 1011, ε|| = 1.25 eVs, σz = 3.7 cm, 14.6 26.0 108.6
σδ = 1.11× 10−4, Vrf = 64 MV

6 Third Example: CLIC Damping Ring

Intrabeam scattering is the dominant effect determining the equilibrium emittance in the CLIC
damping ring [8]. Field errors creating vertical dispersion have a profound impact on the estimated
vertical growth rate, and, therefore, on the equilibrium emittance. As an illustration, Fig. 4 presents
the horizontal and vertical dispersion functions around the CLIC damping ring obtained with ran-
dom tilt angles of all quadrupole magnets, described by a Gaussian distribution of σφ = 200 µrad
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standard deviation with a cut-off at 3σφ. One can recognize the two arcs and the two long straight
wiggler sections. Table 4 compares the IBS growth rates computed by the old version of MAD-X,
using the Conte-Martini formalism, and those from the new version of the code. While in the case
of the ideal optics, there is no difference, the vertical growth time becomes a factor 6 shorter, when
errors generating vertical dispersion are included. Figure 5 presents the local IBS growth rates as
a function of position around the ring, for the case with errors.

This example underlines that in tuning studies for the CLIC damping ring, the dependence of
the IBS growth rate on the residual vertical dispersion must be taken into account.

0.0 100. 200. 300. 400.
Momentum offset =    0.00 %

s (m)

ring MAD-X 2.13.12  12/08/05 19.56.54

-0.002

0.0

0.002

0.004

0.006

0.008

0.010

0.012

Dx
(m

),
Dy

(m
)

Dy

Figure 4: The horizontal and vertical dispersion functions in the CLIC damping ring with
quadrupole random tilt angles of σφ = 200 µrad cut off at 3σφ.
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Table 4: IBS growth rates in the CLIC damping ring computed with the old and new version of
MAD-X for the ideal optics and with random quadrupole roll angles of σ = 200 µrad, with a
Gaussian distribution cut at 2.5 σ.

no errors errors
old MAD-X new MAD-X old MAD-X new MAD-X

τl [ms] 2.2 2.2 2.2 2.2
τx [ms] 2.2 2.2 2.2 2.1
τy [ms] 12.6 12.6 12.6 2.0
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Figure 5: Local longitudinal, horizontal and vertical IBS growth rate in units of 1/s as a function of
position in m around the CLIC damping ring, with quadrupole random tilt angles of σφ = 200 µrad
cut off at 3σφ.
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7 Limitations and Outlook

The theory of Bjorken-Mtingwa calculates the rms emittance growth rates assuming Gaussian
beams. In reality, a beam will not be exactly of Gaussian shape, e.g., due to the very effect of
intrabeam scattering. The existing theories of Bjorken-Mtingwa or Piwinski do not predict the
emittance growth for non-Gaussian distributions, neither do they describe the tails generated by
intrabeam scattering.

An attempt to more correctly estimate the emittance growth of the beam core due to intra-
beam scattering for electron or positron storage rings was proposed by Raubenheimer [9], who
adjusted the upper limit of the Coulomb integral so as to discard single-scattering events over a
radiation damping time, thereby removing the contribution of the tail increase to the rms growth
rate. This modi£cation reduces the effective growth rate by about a factor of 0.6, compared with
the conventional calculation.

An alternative and more comprehensive approach to address and to model tails are multi-
particle Monte-Carlo simulations Áa la MOCAC [10], which is based on a binary collision model
[11]. This type of code can model any distribution, but long computing times are implied. We
consider adding a Monte-Carlo simulation IBS module to MAD-X in the longer-term future.

Coupling between the horizontal and vertical betatron motion is not accounted for in the for-
malism presented here.

Lastly, both the Bjorken-Mtingwa paper and our derivation in this paper start from an invari-
ant Coulomb scattering amplitude of the form M = 4πα/q2, where α denotes the £ne-structure
constant and q the four-momentum transfer. This scattering amplitude describes the Coulomb
interaction of two charged spinless and point-like particles, with all the entailed limitations.

8 Summary

Applying the Bjorken-Mtingwa recipe, we have derived generalized expressions for the three in-
trabeam scattering growth rates, which are valid also if the beam energy is not ultrarelativistic,
or if vertical dispersion is present either by design or due to errors. In the limit of zero vertical
dispersion our result almost reduces to that of Conte and Martini, except for a small difference
in the horizontal growth rate. Three examples, from the LHC, the LHC upgrade, and the CLIC
damping ring, respectively, demonstrate that the effect of the vertical dispersion is predominant for
the vertical growth rate, which is changed, for the LHC, by four orders of magnitude and in the
sign, and, for the CLIC damping ring with errors, by a factor of 6. The new IBS formulae have
been committed to the MAD-X code.
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