
LHC Project Note 344

May 25, 2004

Werner.Herr@cern.ch

Particle tracking with MAD-X including LHC

beam-beam interactions

W. Herr, AB Division, CERN

Keywords: beam-beam, tracking, MAD-X

Summary

Particle tracking with beam-beam interactions is necessary to study the stability of the LHC beams
for different operational conditions. The MAD-X program allows the introduction of beam-beam
elements into the lattice and a realistic simulation. To allow an efficient evaluation of different
scenarios and problems, a set of tools has been developped, based on the MAD-X program. The
techniques necessary for flexible and advanced tracking studies including LHC beam-beam inter-
actions are described in this note. Alternatively, the described techniques can be used to provide
the necessary input for massive tracking studies with SIXTRACK.

1 Introduction

Tracking studies are the usual tool to investigate the stability of a beam, in particular in
the presence of non-linear fields. Such tracking studies were extensively used to evaluate the
dynamic aperture of the LHC [1] at injection and collision energies. A very important non-
linearity in the LHC is the beam-beam interaction and to evaluate the long term stability,
it must be taken into account. Tracking studies with beam-beam interactions are used for
several reasons:

• Determine the detuning (footprints)

• Evaluate the dynamic aperture in the presence of beam-beam effects

• Study coherent beam-beam effects

While the last effect usually requires special programs (e.g. BEAMX [2]), the first two can
be studied [3, 4, 5] with the MAD-X program [6] or dedicated tracking programs such as
SIXTRACK and its run environment [7, 8, 9]).

This is an internal CERN publication and does not necessarily reflect the views of the LHC project management.

1

In this note I shall describe which input is necessary and how it is prepared, in particular
for the more advanced tracking of selected bunches.

2 Tracking with LHC beam-beam effects

In general, the beam-beam interactions in a tracking program are represented by a series of
localized, non-linear kicks, computed from the particle’s coordinates using the lattice and
beam parameters. These interactions can be either head-on or parasitic, so-called long-range
interactions.

2.1 Bunch to bunch differences

The large number of bunches in the LHC add significant complications to this procedures, in
particular due to the crossing angle and so-called PACMAN bunches [10]. Due to the LHC
bunch filling schemes [11, 12, 13] the different bunches can experience very significantly
different beam-beam effects and this should be taken into account for all tracking studies.
In previous studies only the nominal bunches, i.e. with the full collisions scheme, were
simulated. Naively one might expect that these bunches, which experience the maximum
integrated beam-beam effects, are the most unstable. However, the other bunches will have
different tunes and orbits and occupy different parts in the tune diagram and usually the
machine is optimized for the nominal bunches which, for standard filling schemes, are the
mayority of the bunches [11]. For a given bunch (i.e. at a specified bucket or position
number) the correct collision scheme at the appropriate longitudinal positions in the ring
must be applied. For example the computation of tune footprints requires the insertion
of 120 long range and 4 head-on beam-beam elements [4]. Since the optical parameters
at these positions are in general different from each other, a more automated procedure is
highly useful.

A set of utilities has been produced to simplify the setting up of the beam-beam tracking
in MAD-X which will be described in the following.

2.2 Head-on collisions

In the experimental collision points of the LHC, the bunches collide not exactly head-on,
but at a small crossing angle, either in the horizontal or vertical plane [14]. In order to
simulate this crossing angle, the bunches are sliced into several parts with equal intensity.
In the standard setup, 5 slices per bunch are used. This breaks the symmetry between the
two planes and couples the longitudinal and transverse planes.

2.3 Parameter space

To allow a good evaluation of the effect of the beam-beam interactions on the beam stability,
it must be possible to implement different scenarios which affect the strength and type of
the beam-beam effects. Such important parameters are:

2

• Crossing schemes, i.e. horizontal versus vertical crossing planes and alternating cross-
ing schemes.

• Bunch spacing, leading to a different number of long range interactions.

• Bunch filling schemes, which largely determine the collision schedules of the different
bunches [11, 12, 13].

To efficiently study the different options and combinations between them, a flexible procedure
is required where switches should be used wherever possible.

2.4 Self-consistent parameters

The different beam-beam effects for the different bunches [10] lead to slightly different closed
orbits and in turn to a slightly changed beam separation which may lead to a slightly different
beam-beam effects. The full treatment therefore requires the self-consistent calculation of the
beam separation which is used in the beam-beam element. Usually this effect is considered a
negligible perturbation and is ignored. Although this may be justified for most applications,
I show how this information can easily be incorporated.

3 MAD-X setup

Particle tracking in MAD-X requires a complete description of the machine, i.e. the sequence
of elements and their strengths. At the localized positions of the beam-beam interactions, a
beam-beam element is inserted as a thin lens.

3.1 Preliminaries

Tracking with MAD-X requires the lattice in the form of thin lenses. The MAD-X command
makethin can be used to convert a sequence with thick lenses. To setup beam-beam ele-
ments, it is required to define the properties of the opposing beam. Contrary to most other
colliders the LHC has two separate rings and at a given longitudinal position the optical pa-
rameters for the two rings are in general not the same. It is therefore necessary to calculate
the optics for both rings and to always use the appropriate values. This is true although any
weak-strong tracking needs to be done only for one beam. Any strong-strong effects on the
single particle behaviour (such as self-consistent beam separation) have to be implemented
explicitly in the setup and are the subject of part of this note.

Most important is the correct computation of the crossing and separation schemes since
they determine the geometry and therefore the strength of long range beam-beam interac-
tions. They are usually pre-computed and can be switch on and off with scaling parameters
(e.g. on x1, on sep1 etc.). Setting on x1 = 1.0 gives the nominal crossing angle in inter-
action point 1. This strategy also applies to the experimental spectrometer magnets in IP2
(ALICE) and IP8 (LHCb) together with their compensation magnets (on alice,on lhcb).

3

3.2 Beam-beam element in MAD-X

A general beam-beam element in MAD-X is defined as:

bb: beambeam, sigx=SIGMAX,sigy=SIGMAY,

xma=X,yma=Y,charge=Q;

where SIGMAX and SIGMAY are the horizontal and vertical beam sizes of the opposing
beam, Q is the particle’s charge and X and Y are the horizontal and vertical displacements
of the opposite beam with respect to its ideal orbit. Parameters important for the beam-
beam effects, such as number of particles per bunch (NPART) and beam emittances EX
and EY , and the ENERGY are specified in the BEAM command [6]. Other relevant
parameters such as bunch length (SIGT, for head-on collisions with a crossing angle) and
relative energy spread (SIGE) are specified also with the BEAM command.

This is sufficient to compute the kicks from head-on (i.e. in general: XMA = YMA = 0)
and long range interactions when the beams are separated (in general: XMA and/or YMA
�= 0).

3.3 Calculation of parameters for beam-beam elements

The required parameters are usually taken from a previously calculated optics table, e.g. at
a beam-beam position marked as bbpos1, and where needed from the parameters entered
with the BEAM command [6]. For example:

bb: beambeam, sigx=sqrt(bbpos1->betx*beam->ex),

sigy=sqrt(bbpos1->bety*beam->ey),

xma=bbpos1->x,yma=bbpos1->y,charge=beam->charge;

The strategy is therefore:

1 Insert beam-beam markers at the position of head-on or long range beam-beam
interactions.

2 Calculate the unperturbed optics with the markers in place.

3 Provide the beam-beam elements at the position of the markers.

This requires to run MAD-X at least once to prepare the input for the tracking study.
Considering the large number of collisions in the LHC (4 head-on and up to 120 long

range collisions) this procedure must be simplified by the use of macros which are available
in MAD-X. I use one particular feature to write formatted output into a file using macros.
This output can be in the form of regular MAD-X input and therefore can be read in and
executed by MAD-X, i.e. the input commands are prepared by MAD-X itself for later use.
It is particularly useful that names and strings can be constructed from variables and loop
indices. We can therefore prepare the full description of a beam-beam element, using the
information from the computed optics and write it onto a file. This file can be used either
in the same run or can be stored and read in again later on.

It has been mentioned before that some parameters must be taken from the opposing
beam, such as beam size and intensity. Therefore they must be inserted in the beam-beam

4

elements correctly. If it is not obvious from the commands, (e.g. the USEed sequence), for
the attributes of the BEAM command one can add the sequence name to the attributes, i.e.
beam− > ex can be replaced by beam%lhcb2− > ex to indicate that the attributes should
be taken for the sequence lhcb2. In my macros I am not using this feature since it reduces
the flexibility.

As a very simple example I show the macro definition:

instbb(nn, kk): macro = {

print, text="install, element= bbipnnlkk, at=-kk*long_b, from=ipnn;";

print, text="install, element= bbipnnrkk, at=+kk*long_b, from=ipnn;";

}

When it is called like:

k = 1;

n = 5;

while (k < 6)

{

exec, instbb($n, $k);

k = k + 1;

}

stop;

it will provide a list of install commands that can be used in MAD-X (here to install long-
range beam-beam elements around interaction point 5, assuming long b is half of the bunch
spacing):

install, element= bbip5l1, at=-1*long_b, from=ip5;

install, element= bbip5r1, at=+1*long_b, from=ip5;

install, element= bbip5l2, at=-2*long_b, from=ip5;

install, element= bbip5r2, at=+2*long_b, from=ip5;

install, element= bbip5l3, at=-3*long_b, from=ip5;

install, element= bbip5r3, at=+3*long_b, from=ip5;

install, element= bbip5l4, at=-4*long_b, from=ip5;

install, element= bbip5r4, at=+4*long_b, from=ip5;

install, element= bbip5l5, at=-5*long_b, from=ip5;

install, element= bbip5r5, at=+5*long_b, from=ip5;

This type of macros is used extensively to set up all the beam-beam elements. Their be-
haviour can easily be controlled by switches and flags.

A typical macro defining a beam-beam element looks like:

bbele(nn,cc): macro = {

!--- macro defining parasitic beam-beam elements on left side of IP;

!--- nn = IP number, cc = cc-th parasitic encounter

print, text="bbipnnlcc: beambeam,";

print, text=" sigx=sqrt(ipnnlcc->betx*beam->ex),";

5

print, text=" sigy=sqrt(ipnnlcc->bety*beam->ey),";

print, text=" xma=ipnnlcc->x,yma=ipnnlcc->y,";

print, text=" charge:=on_lrnnl;";

}

resulting in e.g. (if called with bbele(1, 10):

bbip1l10: beambeam,

sigx=sqrt(ip1l10->betx*beam->ex),

sigy=sqrt(ip1l10->bety*beam->ey),

xma=ip1l10->x,yma=ip1l10->y,

charge:=on_lr1l;

The parameters can be taken from the optics calculation (like in the example above) or from
another MAD-X input file. Of course, the markers (e.g. here: ip1l10) must be installed
before the optics calculation. In this example, the charge on lr1l could be used to switch on
and off the interaction.

3.4 Different collision patterns

To provide sufficient flexibility, we have divided the preparation run into three separate
parts:

1 Define beam-beam markers for all possible interactions.

2 Set up beam-beam elements for all possible interactions.

3 Run MAD-X with the TWISS command to calculate and fill the beam-beam elements
using the optical functions calculated at the markers.

4 Install these beam-beam elements at the appropriate positions for a given bunch.

5 Store the completed elements or the whole sequence on a file.

This procedure has a non obvious advantage: when bunches are treated which have a collision
pattern different from the nominal pattern (i.e. all possible interactions), one has to only
modify the step 4, i.e. install only those beam-beam elements which are really needed.
Furthermore, the results from steps 1 to 3 can be stored and re-used in later runs.

3.5 Definition of collision pattern

In general, every bunch follows its own collision schedule and specific pattern of head-on
and long range interactions. A given pattern is therefore only valid for a specific bunch, (or
bunches with the identical pattern).

In order to compute the correct pattern, a program COLSCH was written which provides
the necessary information. It computes various statistics on the collision pattern such as
number of long range interactions, missing head-on collisions and many others. For all
bunches the complete collision schedule is computed and if requested it is printed to a

6

file. This includes the list of all pairs of interactions. For a specified bunch the relevant
information is made available in a format digestible by MAD-X. This information can be
used to manipulate the installation of the beam-beam elements (step 4 in the procedure
described above), and only the required beam-beam elements are installed.

For the computation, it is necessary to provide to COLSCH :

• Pattern of interaction points around the machine.

• Filling pattern of the bunches.

All information is provided in the form of two separate input files of the types shown below:

A file with the collision pattern (coll.in):

1 2 -15 +15

892 2 -15 +15

3565 2 -15 +15

6235 2 -15 +15

A file with the filling pattern (fill.in):

#Number of groups

8

72 1 8 0 72 1 8 0 72 1 38 0 0 0 0 0

72 1 8 0 72 1 8 0 72 1 38 0 0 0 0 0

72 1 8 0 72 1 8 0 72 1 8 0 72 1 39 0

72 1 8 0 72 1 8 0 72 1 38 0 0 0 0 0

72 1 8 0 72 1 8 0 72 1 38 0 0 0 0 0

72 1 8 0 72 1 8 0 72 1 8 0 72 1 39 0

72 1 8 0 72 1 8 0 72 1 38 0 0 0 0 0

72 1 8 0 72 1 8 0 72 1 38 0 0 0 0 0

72 1 8 0 72 1 8 0 72 1 8 0 72 1 39 0

72 1 8 0 72 1 8 0 72 1 38 0 0 0 0 0

72 1 8 0 72 1 8 0 72 1 38 0 0 0 0 0

72 1 8 0 72 1 8 0 72 1 8 0 72 0 39 0

This example assumes a bunch spacing of 25 ns, i.e. 3564 possible bunch positions around
the ring and therefore 7128 possible collision points. The bunches are specified by their
position around the ring, i.e. with a number between 1 and 3564 for the spacing of 25 ns.
Please note that some numbers will not exist since not all possible positions are filled [10, 12].
All collision points, head-on as well as long range, are specified by their number, i.e. from
1 to 7128 in this example. In the first file (coll.in) the collision points are specified. The
first column indicates the position of the central collision point, the second column whether
a head-on collision will take place (2) or not (0). The third and fourth column give the
number of long range collisions on either side (negative values for left side, positive values
for right side) of the central collision point. It should be mentioned, that the collision point
in IP8 is shifted by 3/2 times 25 ns and the head-on collision is therefore at 6235. The

7

symmetric collision scheme would require 6238 for IP8. It must be pointed out, that these
are all possible head-on and long range collision points, whether they are active or not,
depends on the position of a bunch in the train. This type of descriptions is very flexible
and additional head-on or long range interactions can be defined easily. Even simpler is the
shift of an already defined interaction point by changing its position in the first column.

The description of a full LHC bunch train is given in the second file (fill.in). It should
be interpreted such that we have 72 bunches (code 1) spaced by 25 ns, followed by 8 empty
places (code 0), followed by 72 bunches and so on, until all 3564 are specified. The columns
are put into 8 groups in this example and the number of groups is read in at the beginning
of the file. The number of groups can be chosen to maximize the readability of the file, a
priori it is a free parameter. For other bunch spacings or a different pattern the scheme has
to be modified.

The program COLSCH takes the desired bunch number as an argument and uses the
above description to provide the collision scheme of that bunch in MAD-X language.

Usage:

colsch 5

The output is written into the result file coll.sched. The resulting file can be inserted into a
MAD-X run and will control the step 4 of the installation procedure when it is used together
with the appropriate macro definitions.

The corresponding input files for a bunch spacing of 75 ns are shown below. The program
COLSCH will recognize the number of bunches automatically and hence the number of
potential interaction points.

1 2 -5 +5

298 2 -5 +5

1189 2 -5 +5

2079 2 -5 +5

#Number of groups

8

24 1 2 0 24 1 2 0 24 1 14 0 0 0 0 0

24 1 2 0 24 1 2 0 24 1 14 0 0 0 0 0

24 1 2 0 24 1 2 0 24 1 2 0 24 1 15 0

24 1 2 0 24 1 2 0 24 1 14 0 0 0 0 0

24 1 2 0 24 1 2 0 24 1 14 0 0 0 0 0

24 1 2 0 24 1 2 0 24 1 2 0 24 1 15 0

24 1 2 0 24 1 2 0 24 1 14 0 0 0 0 0

24 1 2 0 24 1 2 0 24 1 14 0 0 0 0 0

24 1 2 0 24 1 2 0 24 1 2 0 24 1 15 0

24 1 2 0 24 1 2 0 24 1 14 0 0 0 0 0

24 1 2 0 24 1 2 0 24 1 14 0 0 0 0 0

24 1 2 0 24 1 2 0 24 1 2 0 24 0 15 0

8

3.6 Self-consistent variables

In the standard tracking studies, the separation between the two beams is assumed constant
and is calculated from the unperturbed machine optics. In principle, the separation be-
tween the two beams is changed by the beam-beam interaction and requires a self-consistent
calculation of the new closed orbits of the two beams [15, 16].

This is done with the program TRAIN . The calculation with TRAIN is preceded by a
MAD-X run which computes the optics parameters at all possible beam-beam elements and
the second order maps between them for both beams.

The TRAIN program uses the same input files as COLSCH to set up the collision
schedule (i.e. fill.in and coll.in). Next it finds an initial closed orbit from the linear one-
turn map with all beam-beam elements switched off. It then iterates over all bunches in
both rings until a self-consistent orbit (i.e. distance between the bunches in the two rings at
the interaction points) is found with all beam-beam elements switched on. The bunch sizes
are assumed to be unchanged in this process. Once all orbits are known, each bunch pair is
tracked with the second order maps to get the tunes, chromaticities and dispersion.

For the tracking with MAD-X, we need the orbit values at the beam-beam encounters for
a given bunch. A bunch can be specified to TRAIN and its orbit values at all beam-beam
encounters are printed to a file. This file together with the appropriate macro-definitions,
completes the definition of self-consistent beam-beam elements. The difference between the
self-consistent and the perturbative treatment is normally rather small, since the machine is
designed for that. However, is certain cases such as ultimate intensities and other crossing
schemes, this difference can become important.

The appendix II gives a listing of the completed beam-beam elements around interaction
point 5 and generated as described for bunch number 8. The 5 beam-beam elements with
a charge of 0.2 are the sliced head-on collisions, each representing 1/5 of the beam-beam
interactions.

Of course bunch number 8 has only 7 long range interactions on the left side of the
interaction point (and all 15 on the right side).

9

4 Examples

Examples of the described programs and features can be found in [17]. It contains the
following programs and command files:

colsch

Takes the input from the files fill.in and coll.in and prepares the collision schedule coll.sched.
It takes the wanted bunch number as a command line argument. If the specified bunch does
not exist, i.e. corresponds to a gap in the train, a warning message is issued and the program
is terminated.

tracoll.madx

Using the official LHC data files, it sets up all necessary beam-beam elements. Their instal-
lation is controlled by coll.sched. This file is produced by a preceding execution of colsch.
Certain interaction regions can be entirely switch on and off by flags in tracoll.madx. It
tracks particles with different amplitudes and analyses the tunes to produce a file foot print
(executing the commands dynap and foot) which can be visualized e.g. with gnuplot to
produce the tune footprints.
(usage with gnuplot : plot ”foot print”with lines).

prep.madx

A MAD-X run to prepare the necessary input for the ztrain program. It can be used without
modification for any bunch filling scheme where the spacing is a multiple of 25 ns and the
length of the common part of the vacuum chamber is smaller than 60 m on both sides.

ztrain

This is a slightly modified version of TRAIN and takes the optics and maps produced
by prep.madx and with the directive from train.in calculates the self-consistent parameters.
The self-consistent orbits are written to the two files beam1.orb and beam2.orb for the selected
bunch number. The bunch is selected in the input file train.in which is shown in appendix
III. The first bunch that appears in the line list of out bunches is selected. For its purpose
as a front-end to trackng with MAD-X, this input file is sufficient. For all more advanced
calculations that can be performed with ztrain, another set of parameters is required.

trascon.madx

A MAD-X run to track particles on the self-consistent orbits stored in beam1.orb and
beam2.orb. In case the particles are tracked through the LHC sequence for beam 1, the
latter must be used. The collision schedule is defined in the file coll.sched produced as
described. In order to get meaningful results, it is highly recommended to use a consistent
(i.e. the same) bunch number for the preparation with ztrain and colsch.

macros

These files contain predefined macros used by the examples to set up beam-beam elements
etc.

foot

A program that takes the table ”dynaptune” from the command dynap and converts it into
a file that can be plotted as a footprint (i.e. takes care of connecting the mesh points etc.).

10

5 APPENDIX I

The latest version of the filling scheme looks like:

File with filling pattern:

#Number of groups

8

72 0 8 0 72 1 8 0 72 1 38 0 0 0 0 0

72 1 8 0 72 1 8 0 72 1 38 0 0 0 0 0

72 1 8 0 72 1 8 0 72 1 8 0 72 1 39 0

72 1 8 0 72 1 8 0 72 1 38 0 0 0 0 0

72 1 8 0 72 1 8 0 72 1 38 0 0 0 0 0

72 1 8 0 72 1 8 0 72 1 8 0 72 1 39 0

72 1 8 0 72 1 8 0 72 1 38 0 0 0 0 0

72 1 8 0 72 1 8 0 72 1 38 0 0 0 0 0

72 1 8 0 72 1 8 0 72 1 8 0 72 1 39 0

72 1 8 0 72 1 8 0 72 1 38 0 0 0 0 0

72 1 8 0 72 1 8 0 72 1 38 0 0 0 0 0

72 1 8 0 72 1 8 0 72 1 8 0 72 1 39 0

11

6 APPENDIX II

Complete set of beam-beam elements for bunch number 8 around IP5.

bbip5pl7: beambeam,

sigx:= 0.0007949737386,sigy:= 0.0008692015205,

xma:=0.003850011,yma:= -1.839e-05,

charge:= 1;

bbip5pl6: beambeam,

sigx:= 0.0007130751649,sigy:= 0.0007130751648,

xma:=0.003452958,yma:=-1.5128e-05,

charge:= 1;

bbip5pl5: beambeam,

sigx:= 0.0005942939162,sigy:= 0.0005942939162,

xma:=0.002877272,yma:=-1.2657e-05,

charge:= 1;

bbip5pl4: beambeam,

sigx:= 0.0004755302744,sigy:= 0.0004755302744,

xma:=0.002301614,yma:=-1.0186e-05,

charge:= 1;

bbip5pl3: beambeam,

sigx:= 0.0003568018215,sigy:= 0.0003568018215,

xma:=0.001725993,yma:= -7.715e-06,

charge:= 1;

bbip5pl2: beambeam,

sigx:= 0.0002381611904,sigy:= 0.0002381611904,

xma:= 0.00115042,yma:= -5.244e-06,

charge:= 1;

bbip5pl1: beambeam,

sigx:= 0.0001198694302,sigy:= 0.0001198694302,

xma:= 0.00057492,yma:= -2.773e-06,

charge:= 1;

bbip5l2: beambeam,

sigx:= 1.594031652e-05,sigy:= 1.594031653e-05,

xma:= 7.441999894e-06,yma:= -3.020000129e-09,

charge:= 0.2;

bbip5l1: beambeam,

sigx:= 1.586568505e-05,sigy:= 1.586568506e-05,

xma:= 2.548249889e-06,yma:= -3.02000012e-09,

charge:= 0.2;

bbip5: beambeam,

sigx:= 1.58531655e-05,sigy:= 1.58531655e-05,

xma:= -4.330001137e-09,yma:= -3.020000114e-09,

charge:= 0.2;

bbip5r1: beambeam,

sigx:= 1.586568505e-05,sigy:= 1.586568505e-05,

12

xma:= -3.414249967e-06,yma:= -3.020000108e-09,

charge:= 0.2;

bbip5r2: beambeam,

sigx:= 1.594031653e-05,sigy:= 1.594031652e-05,

xma:= -8.307999971e-06,yma:= -3.020000099e-09,

charge:= 0.2;

bbip5pr1: beambeam,

sigx:= 0.0001198694302,sigy:= 0.0001198694301,

xma:=-0.00057615,yma:= 2.043e-06,

charge:= 1;

bbip5pr2: beambeam,

sigx:= 0.0002381611905,sigy:= 0.0002381611903,

xma:= -0.001152014,yma:= 4.389e-06,

charge:= 1;

bbip5pr3: beambeam,

sigx:= 0.0003568018216,sigy:= 0.0003568018214,

xma:=-0.00172795,yma:= 6.735e-06,

charge:= 1;

bbip5pr4: beambeam,

sigx:= 0.0004755302745,sigy:= 0.0004755302743,

xma:= -0.002303935,yma:= 9.081e-06,

charge:= 1;

bbip5pr5: beambeam,

sigx:= 0.0005942939163,sigy:= 0.0005942939161,

xma:= -0.002879956,yma:= 1.1427e-05,

charge:= 1;

bbip5pr6: beambeam,

sigx:= 0.000713075165,sigy:= 0.0007130751647,

xma:= -0.003456007,yma:= 1.3773e-05,

charge:= 1;

bbip5pr7: beambeam,

sigx:= 0.0008692015207,sigy:= 0.0007949737384,

xma:= -0.004213039,yma:= 1.5405e-05,

charge:= 1;

bbip5pr8: beambeam,

sigx:= 0.001123262812,sigy:= 0.0007884629068,

xma:= -0.005441869,yma:= 1.5325e-05,

charge:= 1;

bbip5pr9: beambeam,

sigx:= 0.001403592443,sigy:= 0.0007565669835,

xma:=-0.00671924,yma:= 1.4752e-05,

charge:= 1;

bbip5pr10: beambeam,

sigx:= 0.001542610005,sigy:= 0.0008004900362,

xma:= -0.007320783,yma:= 1.5657e-05,

13

charge:= 1;

bbip5pr11: beambeam,

sigx:= 0.001533617994,sigy:= 0.0009221909425,

xma:= -0.007219774,yma:= 1.8084e-05,

charge:= 1;

bbip5pr12: beambeam,

sigx:= 0.001360570143,sigy:= 0.001143896707,

xma:= -0.006346487,yma:= 2.2472e-05,

charge:= 1;

bbip5pr13: beambeam,

sigx:= 0.001147227525,sigy:= 0.001387836215,

xma:= -0.005283438,yma:= 2.7295e-05,

charge:= 1;

bbip5pr14: beambeam,

sigx:= 0.001041525619,sigy:= 0.001498098382,

xma:= -0.004715182,yma:= 2.949e-05,

charge:= 1;

bbip5pr15: beambeam,

sigx:= 0.00103198502,sigy:= 0.001472561096,

xma:= -0.004583487,yma:= 2.9011e-05,

charge:= 1;

14

7 APPENDIX III (train.in)

collision scheme input file

./scheme.apr00

write or execute flags:

1=write, 2=coll, 3=frequ, 4=equ, 5=set, 6=alt files, 7=orbit, 8=2nd-order,

9=w_detail, 10=b_curr, 11=emitt, 12=unused

1 0 0 0 0 0 1 0 0 0 0 0

1=full_coll 2=nturn 3=debug 4=# of out_bunches 5=out_pos 6=write_norm

7=xi_fact 8=hofact 9=amp_bunch (0=all,- every..) 10= amp_fac (see below)

11=lumi_hist 12=beam_2 offset (half-buckets)

1 2 3 4 5 6 7 8 9 10 11 12

1 0 0 4 16 0 1 1 0 0 0 0

list of out_bunches

8 0 0 0 0 0 0 0 0 0 0 0 0 0

orbit output file

train.orb

general output file

train.list

number of bunches for tune

0

beam 1 sequence name

lhcb1

beam 2 sequence name

lhcb2

beam 1 sequence terminator

ip3.m

beam 2 sequence terminator

ip3.p

start amplitude in sigmas (x + y); amp_fac=0: t_gauss, else value

0 0 0 0

#0.1d0 0.d0 0 0

1 below:

b_curr = 0: beam current spread sigma (units of beam-current)

b_curr = 1: factor for even bunches

b_curr = 2: flat +-

2 below: rel. sigma for emittance (t_gauss)

emitt = 0: emittance spread sigma (units of emittance)

emitt = 1: factor for even bunches

emitt = 2: flat +-

emitt = 3: factor for first half of bunches

0.0 0.0

random seed

12345678.d0

end

15

References

[1] H. Grote, L.H.A. Leunissen and F. Schmidt; LHC Dynamic Aperture at Collision, LHC
Project Note 197 (1999)

[2] W. Herr and F. Jones; Parallel computation of beam-beam interactions including longi-
tudinal motion ,Proc. PAC 2003, Portland 12.- 16. May 2003 (2003), CERN-AB-2003-
019-ABP (2003).

[3] W. Herr and J. Miles; A Comparative Study of Beam-beam Tune Footprints for Colliding
Beams with a crossing angle and offset vertex in LHC V4.1, LHC Project Note 04 (1995)

[4] H. Grote and O. Meincke; Tune footprints for collision optics 5.0, LHC Project Note 161
(1998)

[5] Y. Luo and F. Schmidt; Dynamic Aperture Studies for LHC Optics Version 6.2 at Col-
lision, LHC Project Note 310 (2001)

[6] The MAD-X Home Page, http://frs.home.cern.ch/frs/Xdoc/mad-X.html.

[7] F. Schmidt; SixTrack: Version 3, single particle tracking code treating transverse motion
with synchrotron oscillations in a symplectic manner, CERN/SL/94-56 (AP)

[8] M. Hayes and F. Schmidt; Run environment for Sixtrack, LHC Project Note 300 (2003).

[9] F. McIntosh and F. Schmidt; A new run environment for Sixtrack, LHC Project Note
(2004) not yet published.

[10] W. Herr; Effects of PACMAN bunches in the LHC, LHC Project Report 39 (1996)

[11] W. Herr; Missing head-on collisions for different LHC filling schemes, LHC Project
Note 321 (2003)

[12] P. Collier; New base line proton filling scheme, Minutes of the 2nd LHC Technical
Committee, 19.2.2003 (2003).

[13] R. Garoby; Base line proton filling scheme with 72 bunches, Minutes of the 59th LHC
Parameters and Layout Committee, 12.4.2000. (2000)

[14] W. Herr; Features and implications of different LHC crossing schemes, LHC Project
Report 628 (2003)

[15] H. Grote; Self-consistent orbits with beam-beam effects in the LHC, Proc. of EPAC 2000,
Vienna, 26. - 30. 6. 2000, (2000), 1202.

[16] H. Grote and W. Herr; Self-consistent orbits with beam-beam effects in the LHC, Proc.
of the 2001 workshop on beam-beam effects, FNAL, 25.6.-27.6.2001, (2001)

[17] Example page for beam-beam tracking,
http://cern.ch/Werner.Herr/BBEX.

16

