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I. INTRODUCTION

Electron machines, in the simplest situation, can be
viewed as mildly nonsymplectic systems under the influ-
ence of a stochastic force. This stochastic force can be
decomposed into the average (or classical) radiation and
its fluctuation. The classical radiation, when added to
the normal single particle magnetic forces, creates a de-
terministic albeit mildly nonsymplectic system. Close to
the origin of phase space, away from resonances, the mo-
tion is that of a sink, i.e., all the particle go towards the
origin on spiral curves whose shape is mostly determined
by the original symplectic system. Once the fluctuation
are added, they prevent the beam from collapsing into
the origin. Instead a statistical equilibrium is reached:
the stochastic fluctuations being on average balanced by
the deterministic damping.

In this paper we address the issue of computing this
distribution in a systematic way when nonlinearities are
added. The standard method, which we will call the
Chao-Sands[1] method, consists in exploiting the small-
ness of the damping decrements and postulating that the
equilibrium distribution will rest on the invariant of the
original symplectic maps.

The Chao method requires that the map be linear and
that the damping decrements be small compared to all
the linear resonances. It is an approximate linear theory.
It is however a very accurate linear theory because in
practice, one must be very close to the linear resonance
to see any degradation of the computed beam sizes.

Despite its successes, in the context of tracking codes
equipped with truncated power series algebra (TPSA),
one is better to start with an exact linear theory. In our
case, we have developped tools which overloads the “DA”
package of Berz and created a polymorphic type in FOR-
TRAN90; this package also contains numerous analysis
tools which overload the old LIELIB library of Forest.
This implies that the inclusion of TPSA in a tracking
code and its analysis are now painless. Given these tools,
we are no longer bound to formalisms which are derivable
on paper: we can actually implement formalism that are
transparent and closer to the real physics. Such formal-
ism are often easier to implement on the computer than
approximate formalisms.

Thus one can actually implement, on the computer,
the so-called beam envelope formalism. Here, the only

approximation is the linearity of the system. This for-
malism was first implemented in the KEK code SAD by
Oide, Ohmi and Hirata. Forest thanks to TPSA/DA
later implemented it in his own tracking tools. Most re-
cently it was put into the package PTC and it will be
included in MAD-X or any other code linked to PTC
such as BMAD.

Given these powerful tools, one is tempted to ask the
following questions:

1. Can we extend in practice the beam envelope
approach to a full nonlinear moment map or
Stratonovitch expansion, i.e., can we actually com-
pute something on a real system or just babble?

2. Near the origin, does the nonlinear generalization
of the beam envelope theory makes sense, does it
converge to some sensible result?

3. When it does not converge, although the brute force
stochastic tracking shows no resonances, can we fix
it?

In this paper we will answer these questions. Ques-
tion 3 will be partly answered. In fact we will see that,
in a paradoxical and ironical way, it is often possible to
rescue the nonlinear moment approach under the Chao-
Sands condition. In other words, the moment map was
introduced initially to generalize the Chao-Sands meth-
ods. However, in the nonlinear case when the general mo-
ment method diverges, the Chao-Sands method points to
a palliative.

In the rest of the paper we will illustrate our claims on
simple one-degree of freedom maps on which the reader
can perform tracking and check our contentions. In fact,
even in the absence of DA/TPSA, on such simple system
on can use Mathematica, Mapple or any such manipula-
tor to actually perform our calculations. In the end, if
these things are to be really useful, they must be linked
to a real tracking code and thus to a TPSA style package
as we have done in the library PTC.

It is important to realize that this paper could have
been written 15 or 20 years ago. However, in those days,
it would have been mostly unpractical theoritical bab-
bling since we would not have been able to perform real-
istic calculations. The example of the paper are simple so
as to guide the reader and illustrate the approach. The
reader must convince himself that these things are now,
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thanks to modern computer tools, within the reach of a
standard realistic tracking code.

II. THE LINEAR THEORIES: BEAM
ENVELOPE AND CHAO’S INTEGRALS

To understand the differences between these two meth-
ods and to see clearly how one (Chao) is an aprroximation
of the other, let us a look at a simple one-dimensional ex-
ample. This example could represent the approximate
motion in the longitudinal plane. First for simplicity
damping and fluctuation are put at one location so that
the map can be simply written:

ϕ = ϕ − 2π

h
αδδ

δ̃ = δ +
V

E0
sin (ϕ)

δ = λδ δ̃ + ∆ . (1)

Here the quantity ∆ is a stochastic variable of vanishing
average obeying some distribution. λ is a number slightly
below unity providing the necessary damping. And fi-
nally, αδ is the δ-dependent momentum compaction:

αδ =
∑

n=1

αiδ
i . (2)

The other quantities are the harmonic number, the volt-
age and reference energy. The reader should not be dis-
tracted by the adequacy or lack of adequacy of this map.
Rather it is just an example which happens to be more
or less representative of a realistic situation in one degree
of freedom. It will also us to display reproducable results
and compare methods. We will first study the linear de-
terministic map. This will set the ground for the beam
envelope and the Chao method.

A. The Linear Deterministic Map

We first linearize the map of Eq. (1):

ϕ = ϕ − 2π

h
α1δ

δ̃ = δ +
V

E0
ϕ

δ = λδ̃ + ∆ . (3)

This map can be rewritten in matrix form:

z = Mz + ∆

where M =

(
1 −2π

h α1

λV
E0

λ
(
1 + 2πV

hE0

)
)

. (4)

In one degree of freedom, we can rewrite the matrix M
as the product of a constant times a symplectic matrix

K:

M = ΛK

K =

(
λ−1/2 −λ−1/2 2π

h α1

λ1/2 V
E0

λ1/2
(
1 + 2πV

hE0

)
)

=

(
cos µ + α sin µ β sin µ

−γ sin µ cos µ − α sin µ

)

Λ =
(

λ1/2 0
0 λ1/2

)
. (5)

In Eq. (5), the parameters α, β, and γ are the usual Twiss
parameters.

Finally, the map can be written in a normal form using
the usual Courant-Snyder transformation:

M = ΛK = A ΛR︸︷︷︸
N

A−1

M = ANA−1 (6)

where R =
(

cos µ sin µ
− sin µ cos µ

)

and A =
( √

β 0
−α/

√
β 1/

√
β

)
. (7)

These results may appear restricted to the one degree
of freedom case, however in the form of Eq. (6) they gen-
eralize to the multidimensional map. In fact they can
even be extended (and have been extended) to the non-
linear regime. We will explain this later as it is relevant
to the main result of this paper.

B. The Deterministic Moment Map

The linear moment map is simply the matrix M :

〈z〉 = 〈Mz〉 = M 〈z〉 (8)

The quadratic moments are given by the map:

〈zazb〉 =

〈∑

i,j

MaiMbjzizj

〉

=
∑

i,j

MaiMbj 〈zizj〉 (9)

If we call the vector of moments Σ, then this vector is
transformed also by a matrix

Σ = MΣ
⇒ Σ =

(
〈z1〉 , 〈z2〉 ,

〈
z2
1

〉
,
〈
z2
2

〉
, 〈z1z2〉

)
(10)

The matrix for the moment, Eq. (10), is constructed from
Eqs. (8) and (9).
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C. The Linear Stochastic Moment Map

The stochastic part of the map is the additive term in
Eq. (1):

δ = δ + ∆ (11)

More generally we can write a vector equation since all
the phase space variables might fluctuate:

z = z + ∆ (12)

Let us look at the change of an arbitrary moment
〈zm1

1 zm2
2 〉 under the effect of the stochastic kick:

〈zm1
1 zm2

2 〉 = 〈(z1 + ∆1)
m1(z2 + ∆2)

m2 〉 (13)

=
∑

a,b

(m1

a
)(m2

b
)
〈
∆m1−a

1 ∆m2b
2

〉 〈
za
1 zb

2

〉

This stochastic map contains a matrix term and a trans-
lation term in the space of moments. We therefore
rewrite as follows:

Σ = SΣ + Θ (14)

Sij ab = (m1

a
)(m2

b
)
〈
∆m1−a

1 ∆m2b
2

〉

and Θab =
〈
∆a

1∆
b
2

〉

The results of Eq. (13) are quite general. Incidentally,
if the stochastic process depends on phase space itself,
as it usually does, then one can expand the stochastic
kick in powers of the transverse variables as well. For
our simple example map, the vector Θ has only one non
zero component:

Θ02 =
〈
∆2

2

〉
=
〈
∆2
〉

(15)

and consequently, the matrix S is identity to second order
in the moment. For the linearized beam envelope theory,
it is usually true that S is identity; this results holds in
the case of the full six dimensional phase space.

D. Solution for the Equilibrium Moments

Because the stochastic kick ∆ averages to zero, the lin-
ear moments transform completely under the effect of the
deterministic matrix M and thus collapse to the origin.
We are left with the quadratic moments. Combining the
results of the previous section, we have:

〈zazb〉 =
∑

i,j

MaiMbj 〈zizj〉 +
〈
∆2
〉
δa2δb2 (16)

We then change to the normalized variables as defined
by Eq. (7):

〈
ζaζb

〉
=
∑

i,j

NaiNbj 〈ζiζj〉 + β
〈
∆2
〉
δa2δb2 (17)

To simplify further Eq. (17), we introduce the so-called
resonance basis (or phasors):

(
ζ1

ζ2

)
=

1
2

(
1 1
−i i

)

︸ ︷︷ ︸
B

(
ξ1

ξ2

)
(18)

In this basis, the map is diagonal and is given by:

C =
(

e−iµ−d 0
0 eiµ−d

)
= B−1NB

where λ = e2d . (19)

In the resonance basis, the full stochastic map becomes:
〈
ξ
2

1

〉
= e−2iµ−2d

〈
ξ2
1

〉
− β

〈
∆2
〉

〈
ξ
2

2

〉
= e2iµ−2d

〈
ξ2
2

〉
− β

〈
∆2
〉

〈
ξ1ξ2

〉
= e−2d 〈ξ1ξ2〉 + β

〈
∆2
〉

(20)

The equilibrium beam sizes are obtained by equating the
final moments to the initial moments in Eq. (20). In
resonance basis, three terms emerge:

〈
ξ2
1

〉
∞ =

−β
〈
∆2
〉

1 − e−2iµ−2d

〈
ξ2
2

〉
∞ =

−β
〈
∆2
〉

1 − e2iµ−2d

〈ξ1ξ2〉∞ =
β
〈
∆2
〉

1 − e−2d
(21)

By multiplying the matrices A and B, one can get the
moments of the original phase space variables:

AB =
1
2

( √
β

√
β

−α−i√
β

−α+i√
β

)
(22)

Using this, we obtain for example,

〈
z2
1

〉
∞ =

1
4
β
(〈

ξ2
1

〉
∞ +

〈
ξ2
2

〉
∞

)
+

β

2
〈ξ1ξ2〉∞ (23)

= −1
2
β2
〈
∆2
〉

Re

{
1

1 − ei2µ−2d

}
+

β2
〈
∆2
〉

2 (1 − e−2d)

E. The Chao-Sands Approximation

The results of Sec. (II D) are actually exact for a linear
system. In general, one can compute a full one turn map
for the 21 moments of the six dimensional phase space
of an accelerator. This map will have a deterministic
part and translational part: the features in Eq. (14) are
generic to the full linear and even nonlinear map. The
code SAD of KEK and the library PTC use this approach
for calculation of equilibrium distributions.

The reader familiar with synchrotron integral theory
will notice the absence of the so-called “equilibrium em-
mitance.” In fact, perhaps the reader has notices that,
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in Eq. (23), the equilibrium value of
〈
z2
1

〉
depends poten-

tially on three quantities:
〈
ξ2
1

〉
∞,
〈
ξ2
2

〉
∞ and 〈ξ1ξ2〉∞.

How do we regain the “synchrotron” integral theory?
First let us regain it through mindless approximation on
equation Eq. (23), keeping in mind that similar manipu-
lations are possible on the other two moments. We first
notice that the usual resonance denominators multiplying
the driving terms of the 2µ resonance, namely multiply-
ing the ξ2

1 and ξ2
2 phasors. When the damping decrement

d is small, more exactly when 2µ − 2d is far from 2π or
zero, then the resonance terms are small compare to the
term multiplying the ξ1ξ2. In the case, the equilibrium
beam size reduces to:

〈
z2
1

〉
∞ ≈

β2
〈
∆2
〉

2 (1 − e−2d)

≈ β

2
β
〈
∆2
〉

2d︸ ︷︷ ︸
equilibrium emittance

(24)

The equilibrium emittance is the (approximate) aver-
age of ξ1ξ2 which is simply the average of the quadratic
invariant of the symplectic map. In one degree of free-
dom, this is the Courant-Snyder invariant. The beam
sizes are related to the equilibrium emittance through
the usual formulas connecting the normalized variables
to the original phase space variables, i.e., through the
map A.

Of course, it is possible to guess these results prior to
any exact moment calculations. Historically, the approx-
imations of Sands and later that of Chao were not derived
from an exact beam envelope calculation. They postu-
lated that the equilibrium distribution level curves match
the invariant curves of the original symplectic map, that
is to say, the curves one derives by normalizing the one
turn symplectic matrix. If the damping is very small,
most particles make many rotations in the neighborhood
of their symplectic trajectories before the effect of the
stochasticity is appreciable. Hence it suffices to compute
the equilibrium value of the function ξ1ξ2 to obtain all
the moments. The formalisms resulting from this ap-
proximation are not necessarily easier to implement in a
tracking code, particularily with the advent of automatic
differentiation packages and modern languages with oper-
ator overloading. However they lead to simpler analytical
formulas which can help the designer of a ring.

As we already mention, the Sands approximation ex-
ploits, in addition to the small damping decrement, the
small longitudinal tune to rewrite the formulas in terms
of expressions which are strictly well defined only in the
cavity-less ring. It is not possible to illustrate this with
a one-degree of freedom example. It is, for the purpose
of this paper, irrelevant.

In the next section, we will jump to nonlinear calcu-
lations and illustrate how a nonlinear stochastic map di-
verges.

III. THE NONLINEAR PROBLEM

The general nonlinear problem can be written as

Σ = SMΣ + Θ (25)

where M is a deterministic map. This factorization is not
unique in the general case. But, in accelerators, because
damping is small and the Chao-Sands approximation is
not bad, it is fruitful to factor the map in that manner.
The fixed point of this map is given by the formula:

Σ∞ = (1 − SM)−1Θ (26)

Let us assume that this expression can be expanded, i.e.,

Σ∞ =
∞∑

n=0

(SM)nΘ (27)

The reader can check that Eq. (27) is equivalent to start-
ing with a Dirac delta function at the origin, that is to
say, all the particles are at z = 0 and letting it evolve
until it reaches equilibrium. Remarkably, as we will see,
this series often converges. We examine in the next sec-
tion the reasons why this series may not converge even
when the final distribution seems free of any pathologies
when tracked with brute force.

A. The Perfect Integrable Deterministic Map

In this paper we concentrate on nonlinear maps which
are free of resonance around the origin. Therefore let
us assume that it is possible, at least to some order in
the Taylor Series, to rewrite the deterministic map in a
normal form reminiscent of the symplectic normal form:

m = a ◦ n ◦ a−1 (28)

The normal form n is best understood through its Lie
operator representation. Its Lie map N has the form

N = exp

( ∞∑

n=0

µnJn∂φ +
∞∑

n=0

dn2Jn+1∂J

)
(29)

where
{

ξ1 =
√

2J exp (−iφ)
ξ2 = −

√
2J exp (iφ)

The first term in Eq. (29) represent the tune shifts with
amplitude. For small damping, these terms are not ap-
preciably different from the their value in the absence of
damping. The second term contains linear damping and
amplitude dependent damping. In the case of a deter-
ministic map, the moment map is dual to the Lie map.
This means that if we construct the matrix for the Lie
map using the monomials in (ξ1, ξ2) as an expansion ba-
sis for arbitrary functions, then this matrix will be the
transposed of the moment matrix. Therefore the study
of the map N is equivalent to the study of the moment
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map N associated to the original phase space map n of
Eq. (28).

In the case of the symplectic map, it is not possibl to
removefrom N the tune shift terms completely. In fact,
by canonical transformations, it is not possible to remove
any of the symplectic terms: they are invariant under
canonical perturbation. In the case of the nonsymplectic
map, it is possible all the tune shifts:

m = a ◦ b ◦ r ◦ b−1 ◦ a−1 (30)

The map r is simply the linear map encountered before:
a rotation times a pure damping. This is the map repre-
sented by the matrix N of Eq. (5). The Lie maps associ-
ated to r is simply:

R = exp (µ0∂φ + d02J∂J ) (31)

Discussion
We can ask the following question. Given the map N

of Eq. (29) and assuming it is represents well the origi-
nal map in the neighborhood of the origin which is under
investigation, will the map R be an equally good rep-
resentation? The answer answer to this is yes provided
the function multiplying ∂J in Eq. (29) does not vanish
for some values of J . If it does vanish, we then have a
limit cycle and potentially a reversal from damping to
antidamping beyond the limit cycle. This is not possible
in the case of the map of Eq. (31).

So we conclude from Eq. (31), that near the origin
of phase space in an accelerator with classical rediation,
all the moments collapse to zero. The map truly damps
towards the origin. It should be pointed out that with-
out radiation, the normal form predicts that a distribu-
tion whose level curves are made of the invariant J will
stay invariant. The moment map however contains secu-
lar terms which makes useless once expanded: truly the
damping cures this problem.

The next question we address is what happens in the
presence of stochastic fluctuations to the full nonlinear
moment map.

B. The Stochastic Moment Map Divergence

Naively we may expect that if the motion is a sink for
the deterministic part of the map, then with a bit of luck,
the results of the previous section will follow. We have
found on examples that this is not necessarily the case.
Indeed for some values of the nonlinearities, the series
of Eq. (27) does converge and the results agree with a
Monte Carlo simulation beautifully. For other values of
the map, eventhough we are in a regime void of reso-
nances, the series diverges miserably. What is the cause
of this divergence? It turns out that the cause is related
to secular terms in the stochastic moment map. In the
case of small damping, where the Chao-Sands approxi-
mation holds, these secular terms are just the tune shift
terms of Eq. (28).

Perhaps the following pseudo-physical explanation
may help. In the case of a deterministic map with damp-
ing, a particle at a certain amplitude J will have secular
terms in the expansion of its motion has a Taylor series.
And therefore, so will have the moments. However such
a particle never stays at this value of J but inexorably
falls torwards the origin. Therefore eventually the secu-
lar terms tend towards zero at an exponential rate: the
power of the moment map converges towards the zero
matrix. In the stochastic case, the stochastic part of the
matrix will fight this tendency. Indeed this is why we
have an equilibrium distribution. These terms may even-
tually make the series once more divergent. However we
cannot conclude that a divergent series means necessarily
the absence of an equilibrium distribution. Just as in the
symplectic case, this could be an artifact of the expan-
sion. As we said above, numerical Monte Carlo studies
confirm the existence of an equilibrim distribution.

Here we would like an exactly solvable case which will
show to the reader explicitely the destructive effects on
secular terms in the moment map and how their removal
may restore convergence of the series of Eq. (27). To do
this we will construct a very special stochastic map and
analyse its properties.

Let us construct a nonlinear map whose stochastic
properties are trivial thanks to symmetries. Consider
again the map of Eq. (28) and let us add to it a very
special stochastic force:

m = a ◦ s ◦ n ◦ a−1 (32)
s1(ζ1, ζ2) = ζ1 + ∆1

s2(ζ1, ζ2) = ζ2 + ∆2

n = λ ◦ r
r1 = cos (µ̃) ζ1 + sin (µ̃) ζ2

r2 = cos (µ̃) ζ2 − sin (µ̃) ζ1

µ̃ = µ + µ′(ζ2
1 + ζ2

2)
λ(ζ1, ζ2) = (λζ1, λζ2) ; λ = e−d.

Let assume furthermore that the stochastic variables ∆1

and ∆2 are totally uncorrelated but have totally identical
distribution with vashing odd moments. Then the map
of Eq. (32) has some remarkable properties:

1. Any initial distribution tends towards the equilib-
rium distribution for positive damping decrement.

2. All such distributions sit on level curves corre-
sponding to the invariant curves of the determinis-
tic map. In the normalized space, these are circles.
In fact, the stability analysis does not depend on
the distorsion map a.

3. The equilibrium distribution does not depends on
the tune shift with amplitude coefficient µ′

4. For large enough µ′ the stochastic moment map
has eigenvalues greater than unity and therefore
violates the fundamental property of item 1.
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Since the map a of our example is irrelevant to the dis-
cussion, we will work and state everything in normalized
space. The above assertions are based on the high de-
gree of symmetry of both the deterministic map and the
stochastic force. Although we cannot easily guess the
exact density of each level curve of the equilibrium dis-
tribution, the symmetry tells us that these are circles.
Furthermore, it is clear that the tune shift with ampli-
tude plays no role since its moves a given particle along a
curve on which the stochastic properties are totally pre-
serve. What is less clear is the role of the tune shift in
making the stochastic moment map diverge. To see how
this happens, let us compute the moment map to quartic
order.

The reader will also notice that all odd moments van-
ish and thus we can ignore them. We will only consider
distributions with even moments to facilitate the illustra-
tion. Let us compute the deterministic moment map in
resonance basis. We start with the map for ξ1(= ζ1+iζ2):

ξ1 = λe−iµ (1 − iµ′ξ1ξ2) ξ1 + · · ·
⇓〈

ξ
2

1

〉
= λ2e−i2µ

(〈
ξ2
1

〉
− i2µ′ 〈ξ3

1ξ2

〉)
+ · · ·

〈
ξ
3

1ξ2

〉
= λ4e−i2µ

〈
ξ3
1ξ2

〉
· · ·

〈
ξ1ξ2

〉
= λ2 〈ξ1ξ2〉 + · · · (33)

We will see that the three moments (and their com-
plex conjugate) suffice to understand the basic fea-
tures of our example map. Now using Eq. (33),
we write the matrix M for the three moments:



〈
ξ
2

1

〉
〈
ξ
3

1ξ2

〉
〈
ξ1ξ2

〉


 = M




〈
ξ2
1

〉
〈
ξ3
1ξ2

〉

〈ξ1ξ2〉




=




Γ2 −Γ2i2µ′ 0
0 λ2Γ2 0
0 0 λ2





〈
ξ2
1

〉
〈
ξ3
1ξ2

〉

〈ξ1ξ2〉


 (34)

where Γ = λe−iµ.

We now produce the map for the fluctuation ∆(= ∆1 +
i∆2). For a little generality, let us assume:

〈
∆2

1

〉
= δ2 + D2/2 and

〈
∆2

2

〉
= δ2 − D2/2

〈
∆4

1

〉
= δ4 + D4/2 and

〈
∆4

2

〉
= δ4 − D4/2 . (35)

The asymetries D2 and D4 are zero for our special map.
Here we keep them different from zero just to what can
happen in a more general case. We can now compute the

stochastic map on the three relevant moments:
〈
ξ
2

1

〉
=
〈
ξ2
1

〉
+
〈
∆2
〉

+ i2 〈ξ1∆〉︸ ︷︷ ︸
=0

=
〈
ξ2
1

〉
+
〈
∆2

1 − ∆2
2 + i2∆1∆2

〉

=
〈
ξ2
1

〉
+ D2 (36)

〈
ξ1ξ2

〉
= 〈ξ1ξ2〉 + 〈∆∆?〉 + i2 〈ξ1∆? + ξ2∆〉︸ ︷︷ ︸

=0

= 〈ξ1ξ2〉 + 2δ2 (37)

And, finally,
〈
ξ
3

1ξ2

〉
=
〈
ξ3
1ξ2

〉
+ 3 〈ξ1ξ2〉∆2 + 6

〈
ξ2
1

〉
δ2 + D4(38)

The stochastic kick map, as parametrized in Eq. (14), is
just:

Θ =
(
D2, D4, 2δ2

)

S =




1 0 0
6δ2 1 3D2

0 0 1


 (39)

Thus the full matrix of the map, including the determin-
istic part, is given by:

SM =




Γ2 −Γ2i2µ′ 0
6δ2Γ2 Γ2

(
λ2 − i12δ2µ′) 3D2λ

2

0 0 λ2


 (40)

Looking at this simple example, we notice that the equi-
librium value of 〈ξ1ξ2〉 does not depend on the asymetri-
cal terms D2 and D4:

Σ∞
3 = 〈ξ1ξ2〉∞ =

2δ2

1 − λ2
(41)

One can then compute the equilibrium values of the two
other moments by solving:

(
Γ2 − 1

)
Σ∞

1 − Γ2i2µ′Σ∞
2 = −D2 (42)

6δ2Γ2Σ∞
1 +

{
Γ2
(
λ2 − i12δ2µ′)− 1

}
Σ∞

2 = −D4

−6D2δ
2λ2

1 − λ2

There are two interesting thing to extract out of this
example. First of all, we can confirm that in the limit
of small damping the equilibrium values Σ∞

1 and Σ∞
2 are

small compared to the equilibrium “emittance” Σ∞
3 . This

is confirm by the determinant of the system of Eq. (42):

Det =
(
1 − Γ2

) (
1 − Γ2λ2

)
+ i12δ2µ′ (43)

This particular function, unlike the denominator in
Eq. (41), is generally a number with a modulus much
larger than the damping decrement d. One notices first
a product of two phasors term and a nonlinear dephasing
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term related to the tune shift with amplitude µ′. This
seems to indicate that a moderate amount of tune shift
with amplitude will actually detune us away and enhance
the effect of the emittance

However, we can verify that an exces of tune shift with
amplitude will render this particular calculation mean-
ingless. We know if we select a perfectly symmetrically
circular stochastic process, i.e., D2 = 0 and D4 = 0, then
all initial distribution should tend towards the equilib-
rium distribution correspounding to µ′ = 0. This can be
checked numerically and even demonstrated for a large
class of stochastic terms using Brower’s fixed point the-
orem. If we go back to the matrix SM and compute the
eigenvalues of the matrix controlling the motion of the
first two planes. They are given by the formula:

λ± = Γ2

{
Ω ±

√
Ω2 − 4λ2

2

}
(44)

where Ω = λ2 + 1 − i12δ2µ′

For µ′ = 0, the two eigenvalues correspound to the pha-
sors eigenvalues, i.e., Γ2λ2 and Γ2; thus all moments con-
verge towards a the equilibrium moments. However for a
given value of µ′, some distribution which are not purely
along the emittance direction will diverge. This is totally
unphysical in this symmetrical case. Unfortunately it is
unphysical in many symmetrical situation as well.

To check the above assertions, we tried the following
example:

µ = 0.39 2π

d = 10−4

δ2 = 8 10−10

D2 = −δ2

D4 = −δ4 (45)

These for the numerical simulation we chose a very simple
random variable, namely the variable ∆1 is always zero
and the variable ∆2 takes the value ±

√
2δ with an equal

probability. According to our analysis, the stochastic
map, if computed to 4th order, should be unstable for a
value of the tune shift parameter somewhere in the range

2.8132 <
µ′

2π
< 2.8136 .

One can perform either with a Taylor series package or
an algebraic manipulator the full calculation. In our case
we implemented this stochastic map to arbitrary order
using our FPP package. The results, if carried to 4th

diverge precisely in the predicted range. Of course, it
turns out that higher order calculations diverge for even
smaller values of the tune shift parameter. However,
tracking shows the system converges towards an equilib-
rium even for ludicrous values of the amplitude tune shift
(> 1, 000, 000!) and that this equilibrium is nearly inde-
pendent of this parameters. In the next we draw some
conclusion from this example and propose some palliative
to the unphysical divergence of the moment map.

IV. RESUSCITATING THE CHAO-SANDS
APPROXIMATION

In the previous section we showed, through an exam-
ple, that the tune shift with amplitude can destroy com-
pletely the beam envelope calculation. This should not
be a surprise since in the case of a pure deterministic
map, it leads to the same disastrous result. Tune shifts
with amplitude and filamentation are one and the same
thing. These are secular terms in the map which should
never be expanded.

Let us now assume a map for which we find, through
tracking perhaps, that the equilibrium distribution level
curves sit very nearly on the invariant of the nearby
radiation-free symplectic map. Generally, unless the map
is a constructed pathology as in Sec. (III), such a map
must have a small damping compared the linear reaso-
nance terms.

On such a system, any distribution which is a function
of the symplectic invariants will evolve into an equivalent
distribution. Furthermore, thanks to both filamentation
and stochasticity, any distribution which is not a function
of the invariants alone, will evolve very rapidly towards
such a distribution. In fact, if we look at ergodic aver-
ages over a few turns, then the progression is even faster.
For example, imagine a small blob of particles: it will
rotate in phase space along the symplectic trajectories so
that in a few turns the time average of the distribution
will correspound to a distribution uniformally spreaded
in normalized phase. Moreover, in slightly longer time,
still small compare to a damping time, the tune shifts
with amplitude with filament the distribution so that for
practical purposes it will be uniform in normalized phase.

Suppose that for this particular map, we find that the
expansion as given by Eq. (27) diverges despite a well
behaved distribution in Monte-Carlo simulation. What
can we do about the moment calculation? Let us rewrite
Eq. (26) as follows:

Σ∞ − SMB−1BΣ∞ = Θ (46)

Let us assume that the map B commutes with the orig-
inal symplectic map, i.e., it has the same invariants. In
fact, if the original symplectic Lie map Ms can be nor-
malized as

Ms = A−1RA (47)

then we can assume that the Lie map for B can be written
as

B = A−1RbA (48)

where Rb is an amplitude dependent rotation. Now, un-
der the Chao-Sand assumption, we conclude that

BΣ∞ = Σ∞ + · · ·O(damping) (49)
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This means that Eq. (46) reduces to

Σ∞ =
{
1 − SMB−1

}−1
Θ

=
∞∑

n=0

{
SMB−1

}n
Θ (50)

In the previous example of Sec. (III), the equality in
Eq. (49) was actually exact for vanishing D2 and D4.
Now here comes the application of the Chao-Sands trick.
In cases when the map SM contains eigenvalues bigger
than one and thus whose iteration becomes potentially
unphysical, we may select the map B to annihilate most
of the tune shift in the original stochastic map. Thus
the map of Eq. (50) is likely to converge unlike that of
Eq. (27). Furthermore, if we restrict ourselves to distri-
butions sitting on invariant, it also describes their time
evolution. The dimension of this subspace is very tiny
in the space of moments since it is in one to one corre-
spondance with the space of nonlinear rotation. Thus,

for example, if we look at moments up to order 4, in
one degre of freedom, then it is a space describe by two
parameters. However for maps where the Chao-Sands
approximation is valid, the dynamics of any distribution
converges very rapidly towards a dynamical restricted to
this small subspace. In fact, in the linear case, it is re-
markable in the transverse plane, even the constant term
Θ is often aligned very well along the transverse invari-
ants, i.e., the so-called H functions of the Sands theory.
This is because machines are transversely highly periodic
(made out of cells) and therefore the one-term stochastic
map is already the a power of a primitive cell. In the
Berkeley Advance light Source one can check that the
transverse fluctuation part of Θ is indeed along the H-
function while the longitudinal part is not. Obviously,
because there is only one cavity in the ring, the one turn
longitudinal map is not at all along the H-function. How-
ever, the small damping projects ultimately everything
along the invariants: Chao-Sands theory just works fine!

[1] Sands formalism takes advantage of the asymetry between
the transverse and longitudinal dynamics, namely, νL �
νx, νy. This permits to derive convenient formulas in terms
of quantities well-defined only, strictly speaking, in the

cavity-less ring, such as closed orbit dispersion. For the
purpose of this paper, we prefer to confuse it with the
more symmetric Chao formalism.


