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Abstract

In this paper we introduce a thin-lens formalism for tracking particles in accelerators
and storage rings. It is shown how to solve the (six—dimensional) nonlinear canonical
equations of motion for various kinds of magnets and for cavities in a straightforward
manner by using symplectic kicks. In particular a thin - lens representation of the transfer
matrix for solenoids is derived. The equations derived are valid for arbitrary particle
velocity, i.e. below and above transition energy. This formalism has been used to extend
the tracking code SIXTRACK [1] to allow the treatment of both thick and thin linear
elements.
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1 Introduction

The intuitive approach to modelling an accelerator is to treat the elements like drifts,
dipoles, quadrupoles and others by giving them their correct length (see [4, 5]). However, in
very large machines like for instance the LHC, a hadron collider currently in its design stage,
the curvature of the dipoles is very small and the length of individual elements is negligible
compared to the total length of the accelerator. Moreover dynamic aperture studies are very
time—consuming even on state of the art computer farms. It has therefore been desirable to
approximate the long linear elements by drifts and linear point-like kicks. Of course we want
to make sure that the thin linear lens approximation in the six-dimensional case uses as few
operations as necessary while fulfilling the symplecticity conditions. The aim of this study is
to show how this approximation can be done and to demonstrate its inherent symplecticity.

In detail, the paper is organized as follows:

In the second chapter the general canonical equations of motion are derived. Using the
thin-lens approximation the equations of motion are solved for each element in chapter three.
A summary of the results is presented in chapter four. Appendix A treats in detail the sym-
plecticity condition and its relation to the canonical structure of the equations of motion. In
Appendix B the tracking results are compared for a thin and thick lens lattice of the LHC.
Finally Appendix C gives some useful formulae used in this paper.

2 The Canonical Equations of Motion

The aim of this chapter is to derive the canonical equations for particle motion in storage
rings by a simultaneous treatment of synchrotron and betatron oscillations, taking into account
all kinds of coupling induced by skew quadrupoles and solenoids (coupling of betatron motion
planes) and by non-vanishing dispersion in the cavities (synchro-betatron coupling). Starting
from the Hamiltonian in a fixed Cartesian coordinate system (section 2.1) and introducing the
natural coordinates =z, z, s, (2.2) combined with two additional variables o and 5 which de-
scribe synchrotron motion, the Hamiltonian expressed in machine coordinates may be obtained
by the application of suitable canonical transformations (section 2.3). The particle motion can
then be conveniently calculated (2.4) to various orders of approximation by expanding this
Hamiltonian into a power series. In this report we shall use an approximation in which the
effect of relative energy deviation on the focusing strengths is automatically accounted for. The
equations of motion for various kinds of magnets and for cavities are presented in section 2.5.
The solutions of these equations in the thin-lens approximation are derived in chapter 3.

2.1 The Starting Hamiltonian

The starting point of the description of classical dynamics in storage rings will be the
classical Hamiltonian!, H :

H(7, ﬁ,t) = c- {7?2 + mgcz}1/2 + e (2.1)

'In this report we use the CGS unit system.



.
where 7 and P are canonical position and momentum variables and where the kinetic momentum

o
vector 7 is given by :

A. (2.2)

o —
T=P—

oo

The quantities A and ¢ appearing in eqn. (2.1) are the vector and scalar potentials from
which the electric field £ and the magnetic field B are derived as:

. 104
£ = —grad qb—za;

curl A . (2.3b)

N
[l

In terms of the three unit cartesian coordinate vectors in the fixed laboratory frame,

.
€1, €2, €3 we can write 7 and P as:

= X1'€1+X2'€2+X3'€3; (24&)
Pl'g1+P2'€2+P3'g3. (24b)

'ﬁl =3y
Il

With this Hamiltonian (2.1) the orbital equations of motion are:

d OH

% Xk = +8—_Pk y (25&)

d OH

a P = —ax (2.5b)
(k=1,2,3) .

2.2 Reference Trajectory and Coordinate Frame

The position vector 7' of the particle in eqn. (2.1) refers to a fixed coordinate system with the
coordinates X;, X, and X5;. However, in accelerator physics, it is useful to describe the motion
in terms of the natural coordinates ,z,s in a suitable curvilinear coordinate system. With
this in mind we assume that an ideal closed design orbit exists describing the path of a particle
of constant energy Fy (neglecting of course energy variations due to cavities and radiation loss
and assuming that there are no field errors or correction magnets). We also assume that the
design orbit comprises piecewise flat curves which lie either in the horizontal or vertical plane
so that it has no torsion. The design orbit which will be used as the reference system will in
the following be described by the vector ry(s) where s is the length along the design orbit. An
arbitrary particle orbit 7(s) is then described by the deviation 67(s) of the particle orbit 7(s)
from the design orbit 7p(s):

A(s) = o(s)+ 67(s) . (2.6)

The vector 87 can as usual be described using an orthogonal coordinate system (“dreibein”)
accompanying the particles and comprising



d

a unit tangent vector €s(s) = d_FO(S) = T_(')'(s) ;
s

a unit normal vector  €y(s) ;

and a unit binormal vector  €p(s) = €,(s) x €n(s) .

The Serret—Frenet formulae corresponding to this dreibein read as:

d
= €, = —K(s) -en(s); (2.7a)
d
7 en = +K(s)-é€ss); (2.7b)
s
d

In this natural coordinate system we can represent 7(s) as:

(since the “dreibein” accompanies the design particle the €,—component of 67 is always zero by
definition).

However this representation has the disadvantage that the direction of the normal vector
en changes discontinuously if the particle trajectory is going over from the vertical plane to the
horizontal plane and vice versa. Therefore, it is advantageous to introduce new unit vectors é,,
€, and €, which change their directions continuously. This is achieved by putting

&(s) = +€en(s), if the orbit lies in the horizontal plane;
* - —eB(s)

e(s) = +ep(s), if the orbit lies in the horizontal plane;
S| ten(s)

As a result of these definitions we then obtain:

, 1f the orbit lies in the vertical plane;

, if the orbit lies in the vertical plane.

2(s) x 8u(s) = { +en(s) x €g(s), if the orbit lies in the horizontal plane ;

—ep(s) x en(s), if the orbit lies in the vertical plane;

= &(s), (2.9)

ie. (€x(s), €,(s), €s(s)) represents a r.h. orthonormal system, whereby e, lies always in the
horizontal plane and €, in the vertical plane.

There is still some freedom in how to define this orthonormal system: either the tangential
coordinate €,(s) is chosen to move clockwise (in a right hand sense) around the machine, then
the horizontal coordinate €,(s) is directed outwards, i.e. away from the machine center or the
tangential coordinate €,(s) is chosen to move counter—clockwise around the machine, then the
horizontal coordinate €,(s) is directed towards the machine center. In both cases the vertical
coordinate €,(s) is pointing upwards.

The (z, z, s) coordinate system constructed above for bending magnets may also be used
within a straight section where K, = K, = 0. A global and continuous coordinate system
has thereby been defined under the restriction that the accelerator is torsion free.
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Thus, the orbit-vector r{(s) can be written in the form

F(z,2,8) = To(s)+ z(s) - Exl(s) + 2(s) - x(s) (2.10)
and the Serret-Frenet formulae (2.7) now read as:

%e;(s) = +K.(s) - Eu(s); (2.11a)

%é;(s) = +K.(s)-&(s) (2.11b)

%é’,(s) = —K.(s) @(s) — K.(s) - &(s) (2.11c)

with
K.(s)-K.(s) =0 (2.12)

where K,(s), K,(s) denote the curvatures in the z-direction and in the z—direction respectively.
Note that the sign of K,(s) and K,(s) is fixed by eqn. (2.11) and the choice of the direction

of the coordinates (see above).

2.3 The Hamiltonian in Machine Coordinates

The variables z and z in eqn. (2.10) describe the amplitudes of transverse motion.

In order to provide an analytical description for longitudinal oscillations we introduce two
additional small and oscillating variables o and p, with

c = s—vg-t (2.13)

and 2
P = 37, (2.14)

where the term 7 is defined in (C.1).

The variable o describes the delay in arrival time at position s of a particle and is the
longitudinal separation of the particle from the center of the bunch. The quantity 5 is the
relative energy deviation of the particle.

Starting from the orbital Hamiltonian (2.1) and introducing the length s along the design
orbit as the independent variable (instead of the time t), we can construct the Hamiltonian
of the orbital motion with respect to the new variables z, z, ¢ by a succession of canonical
transformations and a scale transformation [4, 5].

Choosing a gauge with ¢ = 0 (e.g. Coulomb gauge) we then obtain:
H(m,Pm,Z,pz,U,pg;s) = Po — (1 + 77) : [1 + K, -2+ K, - Z] X

e e 1/2

{1 _ (p:v - mAm)Z + (pz - mAz)Z} /

(1+79)*
-1+ K, z+ K, z]- A, , (2.15)
Po-c
2Note that in Refs. [4, 5] p, is defined without the scaling factor ﬁl—,

7



where the relative momentum deviation 7 is defined in Appendix C (see eqn. (C.4)).

The corresponding canonical equations read as:

d OH d OH
_I_ . .

% r = B ; E Pz = _6—:3 ; (2.16&)
d OH d OH
E z = +apz H % P = —E H (216b)
d OH d oOH
or, using a matrix form:
d oOH
T = _S. ¥ (2.17)
with
gT = (:B, Dzy 2, Pz, O, Pa') ) (2'18)

where the matrix S is given by:

S, 0 0 0 1
s=[ 05, 0f; 52:(+1 O). (2.19)
0 0 S,

In order to utilize this Hamiltonian, the electric field € and the magnetic field B or the
corresponding vector potential,

—

A= /I(;c,z,a;s),

for the cavities and for commonly occurring types of accelerator magnets must be given. Once
A is known the fields £ and B may be found using the relations (2.3a,b). Expressed in the
variables z, z, s, o, eqns. (2.3a,b) become (with ¢ = 0):

> 0

£ = ,30.8_01 (2.20)
and
B, = (1+Km.i+Kz.Z)-{%[(l—l-Km-:c—l-Kz-z)-As]—%Az}; (2.21a)
B, — (1+Km'i+Kz'z)-{%Am—%[(1+Km-:c+Kz-z)-As]}; (2.21D)
B, — (%Az—%/lm. (2.21¢)



We assume that besides drift lengths the ring contains bending magnets, quadrupoles, skew
quadrupoles, sextupoles, octupoles®, solenoids and cavities. Then the vector potential A can
be written as [4, 5]:

€ A, = —l[l—l—Km-:c—l—Kz-z]—l—lg-(zz—:cz)—l—N-:cz
Po - C 2 2
A
—g-(;c3—3;cz2)
—2#—4-(24—6:62z2—|—m4)
1 L eV(s) 27
—— . . h-—- ; 2.22
2 90 b E, COS[ I "+"D]’ (2222)
e e
A, = —H- z; A, = +H -z (2.22b)
Po-cC Po-cC

(h = harmonic number) with the following abbreviations*:

N - %.poe.c. (%im _ %iZ)m_z_o : (2.23b)
A = Poe-c'(%)mzzzo ; (2.23¢)
H = %'poe.c'B’(O’O’s)' (2.23¢)

In detail, one has:

a) K2+K2+#0; g=N=XA=pu=H=V=0: bending magnet;
b) g # 0; K.=K,=N=AM=p=H=V =0: quadrupole;

c) N£0; K.=K,=g=A=p=H=V =0: skew quadrupole;
d) X#0; K,=K,=9g=N=p=H=V =0: sextupole;

e) p#0; K,=K,=g=N=XM=H=V =0: octupole;

f) H #0; K,=K,=g=N=X=p=V=0: solenoid;

g) V#0; K,=K,=g=N=XM=p=H=0: Ccavity.

31t has to be mentioned that the formalism can be generalized to higher order multipoles. In fact multipoles
up to 10** order are included in the SIXTRACK code.

“In the coding of SIXTRACK there is, for historical reasons, one important difference: all regular multipoles
e.g. g, A, ¢ and also K, are defined opposite in sign compared to 2.23, while the skew components like N have
the same sign.



Thus the Hamiltonian (2.15) takes the form :

H(m,Pm,Z,Pz,U,Pa-;S) = pa_(l'l'ﬁ)'[l‘l'Km'w‘l'Kz'z]x
{1 [pm+H-z]2+[pz—H-w]2}”2

(1+7)
—I—%-[I-I—Km-:c-l—Kz-z]z—%-g-(zz—:cz)—N-:cz
+%-(m3—3wz2)
+%-(z4—6w222+w4)
+ig- %L_h : e‘;(:) . cos [h-zfﬂ--a—{—go] . (2.24)

Remarks:

1) If the curvatures K, and K, of the design orbit appearing in (2.24) are given, the magnetic
bending field

B’(bend)(s) — (Bgnend)(s)7 ngend)(s)’ 0)
is determined by :

€
——Bri(s) = —K.(s); 2.25
o c e (s) (s) (2.25a)

€

po_CBZE"d(s) = +K.(s). (2.25b)

These relations may be obtained using the fact that the design orbit is a solution of the
equations of motion for constant energy FEj in the absence of cavities and correction coils [6].

2) Equation (2.24) is valid only for protons. For electrons we need the extra term in the
Hamiltonian

Hpada = C1-[K2+K?] -0 (2.26)
2 4
(where C, = 3 ezza—(:)

(for vg & ¢) in order to describe the energy loss by radiation in the bending magnets [7]. In this
case, the cavity phase ¢ in (2.22a) and (2.24) is determined by the need to replace the energy
radiated in the bending magnets. Thus:

so+L so+L
/ ds - eV(s) - sin g - / ds-Eo- Oy - [K+ K?]. (2.27)

average energy uptake in the cavities  average energy loss due to radiation

10



Note that the H,,q term only accounts for the average energy loss. Deviations from this
average due to stochastic radiation effects and damping introduce non-symplectic terms into

the equation of motion.

For those proton storage rings where radiation effects can be neglected there is no average
energy gain in the cavities so that:

sinp=0 = =0, (2.28)
and the choice for ¢ is determined by the stability condition for synchrotron motion:

¢ =0 above “transition” ;

¢ =7 below “transition”

2.4 Series Expansion of the Hamiltonian

Since

lp + H-2z| <€ 1;
|pz_H'$| < 1

the square root

ll et B 4 [ —H-w]2ll/2
(1+4)?

n (2.24) may be expanded in a series:

1_[pm+H'z]2—}—[pz_H_w]2 1/2:
| |

(1+7)
U [put H o2 4 [pe— H o]’
1— 5 1 9) (2.29)

The power at which the series is truncated defines the order of the approximation to the particle
motion.

The second term on the r.h.s. of the Hamiltonian (2.24) is approximated as follows: firstly
only terms of (2.29) up to quadratic in (p, + H - z) and (p, — H - z) will be kept, secondly
of the resulting terms in the numerator only those are considered which are up to quadratic
in (z, z, §, (p+ H - z) and (p, — H - z) ) and thirdly the denominator (1 + 1) is retained,

whence :

1 lp-tH z"+[p.— H- 2]
2 [+ f(po)]

_[]—+Kmm+Kzz]f(pa')+
11

H =

+



SUKI 4 g et (K2 gl 2~ N o2z

x

1
2
A 3 2 Y 4 2 2 4

g(;c —3;cz)—|—ﬂ-(z —6z°z —I—:c)—l—
1

B2 2r-h E

L eV(s) [h-%-a’—l—(p] _ (2.30)

We have replaced 7 by f(p,) to stress its dependence on p,. The power series of f(p,) and

its derivative f'(p,) = % are given in Appendix C by eqns. (C.6) and (C.9) respectively.

Constant terms in the Hamiltonian with no influence on the motion have been dropped.

2.5 Equations of Motion

The Hamiltonian (2.30) now leads to the canonical equations of motion:

i _ +(9'H
dsm B Op»
_ Pt H-z
= 15 7o) ; (2.31a)
éa_ _ oK
dsPe = Oz
z_H'
= —|—w-H—[K§—|—g]-w+N-z+ K, - f(ps)
_% . (wz _ 22) — % . (1;3 —31322) ; (231b)
i _ +6H
ds = Op.
_ p-Hz
= Tl (2.31c)
4, - _9K
dsP: = 0z
= —MH—[KZZ—Q]Z‘FN:U‘I‘K;JC(I)G’)
+A-zz — % (2* =3z2%2); (2.31d)
4, o
dsa B O0ps

12



= 1-[1+K, -z + K. 2] f(ps)

Lt B Hesf

2 1+ £(p.)]"
= 1-14K,-z+ K,z f(p,)
_% () + ()] f(po) 5 (2-31e)
i oH
s T T s
_ % e‘;(:) i [h 2% . Uﬂo] _ (2.31f)

In (2.31) the first four equations describe betatron motion and the last two synchrotron
oscillations. Equations (2.31f) relates to energy conservation. Note that eqns. (2.3le,f) for
synchrotron motion are always nonlinear.

Remark:

If the variables (z, p,, z, p., 0, p,) at position s are known, one obtains the terms z'(s),

2'(s), and n(s) by the relations:

l _ Pm‘|‘HZ . a
m(‘s) - [1+f(Pa)] ) (232 )

, _ p.—H-z
Z'(s) = 7[1%—]((1)0 ] (2.32b)
and
1(s) = Bs - po(s) (2.32¢)

(see eqns. (2.31a), (2.31c) and (2.14)).

13



3 Thin—Lens Approximation

The canonical equations of motion (2.31) shall now be solved for various kinds of magnets

and for cavities using the thin-lens approximation. The symplecticity condition is checked in

all cases using the Jacobian matrix.

3.1 Bending Magnet
3.1.1 Canonical Equations of Motion

For a bending magnet we have:
K4+ K> # 0; K.-K, =0

and

Writing for a bending magnet at position sq:
K2(s) = Kus(s0)- Kuuls)
and assuming K, .(s) to be taken in the form (thin-lens approximation):
K..(s) = Kz.(s0) As-8(s—so),

whereby As denotes the length of the bending magnet we obtain from (2.31):

d__ P

ds a [1 + f(Pa)] ’

% Pr = — [Km(s(,)]2 -As-6(s—s0) -z + K.(s0) As-8(s—30) f(ps) ;
d__ P

ds a [1 + f(Pa)] ’

% P, = — [Kz(so)]2 -As-6(s—s0)-z+ K,(80)  As-8(s—30)- f(ps) ;
A e = 1 f(p) - [Ke ot K. 2] As- (s - s0) - £(p.)

_% () + () f(po) 5

14
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3.1.2 Solution of the Equations of Motion
Equations (3.1) can be solved by integrating both sides from
Sop—€ to sg+¢€
with
0<e — 0

leading to ° :

o = o (3.2a)
pl = pi—[Ku(s0)]"- As-a’ + Ku(s0) - As- f(pl) ; (3-2b)
d4 = 4 (3.2¢)
pl = pi—[K.(s0)]" - As- 2"+ K.(s0) - As- f(p;) ; (3.2d)
of = o~ [K, 2+ K, 2] -As- f'(p) ; (3.2e)
pl = p; (3.2f)
with
yi = y(SO - ) )
y' = y(so+0);
(y = &, Pz, 2y Pz, 0, Po-) .

3.1.3 Jacobian Matrix and Symplecticity Condition

The Jacobian matrix resulting from eqn. (3.2) reads as:

0zt 0z Oz 0zf 0z Ozf
Ozt Op: 0z O0p: OJOo* Opk
opd opl opl op! Op! Op]
Ozt Op: 0z Op: OJdo* Opk
825 827 82 827 82 82
j — (9(;cf, pa}f’ Zfa pzfa Ufa p&f) — 6561 (9]);3 (9zi (9pz’ (90" (9p;
=bend o(z¢, pi, 2%, pi, ot, pi) op! op! op! Op! Opf Op!
0z* Op: 0z¢ 0Op: 0do* Opk
dof 8o’ 0ot 0O8o0F 0Oof Oz
Ozt Op: 0z¢ Op: 0ot Opl
opf 0Opf Op! oOp] oOv] Opl

ozt Opi 0921 Opi Odot Op

*Note that the factors in (3.1b,d, e) which multiply the é—function are continuous functions of s at so.
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1 0 0 00 O
- [Km(so)]2 As 1 0 0 0 +@Q.,
0 0 1 00 O
- 0 0 —[K.(so)?-As 1 0 +Q, (3:3)
_Qm 0 _Qz 01 Q
0 0 0 00 1
with
Q = —[K,-z+K, z]-As- f'(pl);
Qe = +Ku(s0)-As- f'(p3) ; (3.3b)
Q: = +K.(s0) As- f'(p;) -
Using eqn. (2.12) it can be verified that J, . obeys the symplecticity condition
/_fgend ) ﬁ ’ lbend = ﬁ : (34)

Equation (3.4) proves that the transformation
gy — g

described by (3.2a—f) is indeed symplectic (see Appendix A).

3.2 Quadrupole
3.2.1 Canonical Equations of Motion

For a quadrupole we have:

g # 0

and
K, = K, = N=)X=u=H=V =0.
Using thin-lens approximation we write for a quadrupole of length As at position sg:
o(s) = glso)- As-8(s — s0) .
Then we obtain from (2.31):

d Pe

BT Wi (352
% Pz —g(80) - As-8(s—s0) -z ; (3.5b)

16



d P

e (3:59
% p. = +9(s0) - As-6(s—s0)-2z; (3.5d)
d ! ]- N2 N2 !

0 = 1=f () =5 [(@) + ()] f(p) 5 (3.5€)
% po = 0. (3.5f)

3.2.2 Solution of the Equations of Motion

The solution of eqn. (3.5) reads as:

ol = & (3.6a)
pl = pi—g(s0) As-a’; (3.6b)
7 = 2y (3.6¢)
pl = pitg(so) As-z'; (3.6d)
of = o' (3.6e)
pl = p; (3.6f)

3.2.3 Jacobian Matrix and Symplecticity Condition

The Jacobian matrix resulting from eqn. (3.6) takes the form:

a(zt, pf, 2%, pf, of, pf)

Loe = B, 01, 7, L, 00, )
1 0 0 0 00
—9g(s0)-As 1 0 0 00
0 0 1 0 00
N 0 0 +g(so)-As 1 0 0 (3-7)
0 0 0 0 10
0 0 0 0 01
From eqn. (3.7) it can be verified that J qua ©beys the symplecticity condition
T'e S T e = S (3.8)



3.3 Synchrotron—Magnet

3.3.1

Canonical Equations of Motion

For a synchrotron magnet ¢ we have:

and

Writing :

and assuming K, .(s) and g(s) to be taken in the form (thin-lens approximation):

we obtain from (2.31):

a4
ds w
d
ds Pz

d
— 2z

ds

d
ds Pz

d
— 0

ds

with

g # 0; K:+K? # 0 with K,-K. = 0

K;.(s) =

Km,z(s)
g(s)

Pz .
[1 + f(Po)] ’

—G1(s0) - As -

pz .
[1 + f(Po)] ’

—G5(s0) - As -

Km,z(so) ' Ka:,z(s)

= K, .(s0) As-b8(s—s0);

= g(so0) - As-8(s — so)

8(s —s0) -z + Ku(s0) - As-8(s—s0) - f(ps) ;

8(s—s0)-z+ K,(s0) As-6(s—s0) - f(ps) ;

1—f(ps) — [Ko-z+ K, 2] As-8(s —3s0) - f'(ps)

1

=5 (@) + ()] Fpo) 5

2

G1:

K2+g; Gy = Kl —g.

(3.9)

(3.10a)

(3.10b)

(3.10c)

(3.10d)

(3.10e)

(3.10f)

(3.11)

8Note that due to the condition (3.9) cross—terms of g and K, , exist that lead to sextupole and higher
order terms in the Hamiltonian (2.24). This terms are considered small and are omitted in the treatment of

synchrotron magnets.

18



3.3.2 Solution of the Equations of Motion

Equations (3.10) can be solved by integrating both sides from

8g— € to sg+ €

with
0<e — 0

leading to:
2t = ' (3.12a)
p{ = pi—Gi(so) As-z'+ K.(s0) As- f(pl); (3.12b)
# = 2 (3.12¢)
pl = pi—Gy(s0) As- 2+ K,(so) - As- f(pl) ; (3.12d)
of = o'~ [K, z+ K, 2] -As- f'(pl) ; (3.12€)
pl = pi. (3.12f)

3.3.3 Jacobian Matrix and Symplecticity Condition

The Jacobian matrix resulting from eqn. (3.12) reads as:

d(z?, pf, 2, pf, 0%, pf)

Lor = 5, vt 2 01, 7 23)
1 0 0 00 O
—G1(s0) - As 1 0 00 +Q.
0 0 1 00 O
= 0 0 —Gs(so)-As 1 0 +0Q, (3.132)
_Qm 0 _Qz 01 Q
0 0 0 00 1
with
Q = —[K: z+K. z]-As- f'(p;) ;
Qe = +Ko(s0) As- f(p;); (3.13b)
Qz - +Kz(30) - As - fl(p;) -
Using eqn. (3.13) it can be verified that N obeys the symplecticity condition
7T
isyn ’ § ' lsyn = ﬁ ) (3]‘4)
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3.4 Skew Quadrupole

3.4.1 Canonical Equations of Motion

For a skew quadrupole we have:

and

K, =

Using thin-lens approximation we write:

Then we obtain from (2.31):
d

- &

ds

d
ds I

N(s) = N(so)-As-8(s—so).

Pe
1+ f(Pcr)] ’

N(so) - As-86(s—s0)- 23

P )
1+ f(Pcr)] ’

N(so) - As-8(s—s0) T ;

3.4.2 Solution of the Equations of Motion

The solution of eqn. (3.15) reads as:

T = T

of = o
o=

20

(3.15a)

(3.15b)

(3.15¢)

(3.15d)

(3.15¢)

(3.15f)

(3.16a)
(3.16b)
(3.16¢)
(3.16d)
(3.16e)

(3.161)



3.4.3 Jacobian Matrix and Symplecticity Condition

The Jacobian matrix resulting from eqn. (3.16) takes the form:

oz, pf, 2%, pf, of, pf)

Tt = 3(at, pi, 2 pi, o 97
1 0 0 0 00O
0 1 N(so)-As 0 0 0
0 0 1 0 0O
N(so)-As 0 0 100
0 0 0 010
0 0 0 0 0 1

From eqn. (3.17) it can be verified that lsqd obeys the symplecticity condition

3.5 Sextupole
3.5.1

For a sextupole we have:

and

K, =

T ﬁ'isqd :ﬁ

Y sqd

Canonical Equations of Motion

A £ 0

=g=N=p=H=V=0.

(3.17)

(3.18)

Using thin-lens approximation we write for a sextupole of length As at position sq:

Then we obtain from (2.31):

d

ds

A(s) = A(so) - As-68(s—so) -

Pz _
[T+ f(ps)]

‘%A(so)-As-é(s—So) =" =2

p:
[+ f(pe)]’

+A(s0) - As-8(s —s0) -z 2z

1—f(po) - % (@) + ()] £(pe) 5

21
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(3.19D)

(3.19¢)

(3.19d)

(3.19¢)

(3.19f)



3.5.2 Solution of the Equations of Motion

The solution of eqn. (3.19) reads as:

o = 2t (3.20a)
pl = pl- 3 A(s0) - As - [(2*)? — (2)%] ; (3.20b)
4 = 2 (3.20c)
pf = pi4 A(sg) - As- 2 (3.20d)
of = ¢ ; (3.20e)
pl = p; (3.20f)
(see also Refs. [4, 5]).
3.5.3 Jacobian Matrix and Symplecticity Condition
The Jacobian matrix resulting from eqn. (3.20) takes the form:
7 A=f, pl, 21, pf, o7, pf)
et Ot p,y 2, pl, o, pE)
1 0 0 0 00
—X(s0) - As zt 1 +A(s0) - As - 220 0 0
0 0 1 0 00
o +A(s0) - As - 2t 0 +A(s0) - As - 2z 1 0 0 (321)
0 0 0 0 10
0 0 0 0 01
From eqn. (3.21) it can be verified that J ,__. obeys the symplecticity condition
l:f:emt ) ﬁ ’ lsemt = § ) (322)

3.6 Octupole
3.6.1

For an octupole we have:

Canonical Equations of Motion

po#F 0
22



and

K, =

K, =g¢g=N

A=H =V =0.

Using thin-lens approximation we write for a sextupole of length As at position sq:

p(s) = p(so)- As-8(s— so) -

Then we obtain from (2.31):

d
ds v
d
ds P=
d

- Z

ds

d
ds T

P
1+ f(po)]
1

—g,u(so)-As-(S(s—so)-[:03—3:022] ;

P- ,
[+ f(ps)]
1

— S hls0) - Ao 8(s — s0) [ — 347 2]

l_f,(pa')_%

@) + ()] £(po) 5

3.6.2 Solution of the Equations of Motion

The solution of eqn. (3.23) reads as:

(see also Refs. [4, 5]).

(3.23a)

(3.23b)

(3.23¢)

(3.23d)

(3.23€)

(3.231)

(3.24a)
(3.24b)
(3.24c)
(3.24d)

(3.24e)

(3.24f)



3.6.3 Jacobian Matrix and Symplecticity Condition

The Jacobian matrix resulting from eqn. (3.24) takes the form:

_O(=f, pf, 27, pf, of, pf)

loct - a(mﬁ, p;;, Zi, p:, Ui) P;)
1 0 0
B @ As - [(w1)2 _ (Zi)Z] 1 —}—lL(So) -As -z 2t
= tu(so) As-ziz 0+l As - [(2F) — ()]
0 0 0
0 0 ’

From eqn. (3.25) it can be verified that J __, obeys the symplecticity condition

_:Sct.ﬁ.ioct = ﬁ

3.7 Solenoid
3.7.1 Canonical Equations of Motion

For a solenoid we have:
H #+£ 0

and

Writing :
[H(s)]* = H(so) H(s)
and assuming H(s) to be taken in the form (thin-lens approximation):

H(s) = H(so) -As-6(s— sg)

we obtain from (2.31) the equations of motion for a solenoid in the form:

i . Pm-I-H(so)-As-(S(s—so)-z‘
ds B [1+f(Pa)] ’
d o _ e H(so) 2] o e
L T Ty ) Be e
iz _ pz—H(so)-As-5(s—so)-w.
ds [1+ f(ps)] ’

24

o o= O o O

O =H O O o O

_o o o o o

. (3.25)

(3.26)

(3.27a)

(3.27b)

(3.28a)

(3.28b)

(3.28¢c)



. — 80) - As-8(s—s0); 3.28d
d p [1 +f(Pa)] ( 0) ( 0) ( )
d 1

o = 1) - 5 (@] F ) (3.25¢)

d

o, = .28f

7. P 0 (3.28f)
resulting from the Hamiltonian

1 H . z]? — H-z]?

2 [1+ f(ps)]
(see eqn. (2.31)).

In this form eqns. (3.28) cannot be solved by integrating both sides from
So—€ to s+ e
with
0<e — 0

since the factors z(s) and z(s) of the é—function in (3.28b) and (3.28d) are not continuous, as

can be seen from (3.28a,c¢).
In order to simplify eqn. (3.28) we introduce a new set of canonical variables
(5%7 ﬁma 27 ﬁza &7 ﬁa')

using the generating function :

Fs = —[2-cos®+ 2 -sin®]-p, —[-Z-sin®+2-cosO]-p, — G- p, (3.30)
with
1 8
@ = gy L 30

which leads to:

_8F3
Op.
= 4[2-cos®+ 2 -sin@] ;

)
oz
= 4 [ps-cos® —p, -sin O] ;

25



or

=8>

+[—%-sin®+ 2 - cos O] ;
_0F;

0z
+ [pz - sin © + p, - cos O] ;

_0F3
0ps
. A . . . A 00
a—{—[—w-sm@-l—z-cos@]-pm-l—[:c-cos,@-l—z-sm@]-pz}-a—
Do
[, ds-H

G+ {—[-2-sin®+ 2 -cos®O] - p,+[2-cos®O+ 2 -sinO®]-p,} -

_0F;
0o

:pd'

z = £-cos®O+2-sin0B ;
Pr = Pr-cos® +p, sin® ;
z = —2-sin®+ 2-cos O ;
P = —Pr-sin®+p,-cosO ;

o = 6+{—[-2-sin®+ 2-cosO] - p,
[ ds-H(s)
1+ e TP
= 6+{—[-2-sin®+ 2-cos O] [p, - cos O + p, - sin O]
+ [ -cos®+ 2-sin@®] - [—p, -sin O + p, - cos O]}
(Jnds-HG)
QTS

+[2-cos®+ 2-5in0O]-p,}-

The new Hamiltonian reads as:

OF;

7:(30 = Hso
1 1+ s

26

[+ f(ps

(3.32a)
(3.32b)
(3.32¢)
(3.32d)

(3.32€)

(3.326)



_ l.[Pm+H-Z]2+[pz—H-:c]2+8F3.@
2 [+ £(p,)) 56 s
_ L [t H 2P+ [p.—H 2]
2 (14 f(ps)]
+{[5”'Sin@—5'cos@]-pm+[i'-cos®+2-sin®]-pz}'[1fj(fz) )]
Do
L [pt H o 4 p—H o H(s)
2 [+ £(po)] CEpe e P )
1 1 2 2 2 (.2 2
1+ f(ps)] 2 {[P P [z* + z ]}
1 Lofra | 2 (A2 | A2
=TT 2 W tPl T H (242 3.33
1+ f(p.)] 2 {2 + 72 [ 1} (3.33)
and the corresponding canonical equations take the form:
d A a/}:[Sol
s = T ap
P
= Nt )] 3.34
[1+ £(po)] (3.34a)
d,.  OHsa
dst N oz
— _7£ . 2. . _ .
T fy e Bl ) (3.340)
d A a,}:\(.S'ol
- = T
D=
RRTIEN AR 3.34
1+ £(b)] (3:34c)
d . _ OHsa
s’ 02
S S 2 s (s — s0) -
T T Gy Tl At ) (3.34)
d A 87:(SOZ
i’ = o,
__ fies)
[1+ f(ps))
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<o {2+ 52] + (o)

d  OHsa

A

s b = EE

3.7.2 Solution of the Equations of Motion

Equations (3.34) can now be solved by integrating both sides from

-As-8(s— so) - [:f:z—l—éz]} ;

So—€ to sg+¢€

with
0<e — 0
leading to:
= &
. . &
pl = ”;_[1+f(;3:;)] [H(so)]” - As ;
o= 5y
b= e H(so) As s
[+ f(pi)]
R TP UV
[1+ F(5:)] 2
Pl = B,

Choosing in eqn. (3.31) the lower limit of integration s; as

81 = 89 — 0
we furthermore obtain from (3.32) :
o = i,
P = bi;

(3.34e)

(3.34f)

(3.35a)

(3.35b)

(3.35¢)

(3.35d)

(3.35€)

(3.351)

(3.362)

(3.36b)



2 = 3 (3.36¢)

p. = B;; (3.36d)
o = & (3.36e)
b = i (3.360)
and
2 = 2% .cos A® + 37 .sin A® : (3.37a)
pf = pl cosA® +pf sinAO ; (3.37b)
4 = 27 . sinA® + 7. cos A ; (3.37¢c)
pf = —pf-sinAO +pf - cos AO ; (3.37d)
so-I-Od ~
RN O Yy B A RY) (3.37)
[1 + f(pa )]
N “f o af _ 5f Af I AW
- 0'-|—{CC P, — %2 P } f(pa)’
[1 + f )]
pl = pf (3.371)
with
H A
Ao — Hlso) As (3.38)

[+ £(3)]°
whereby we have used eqns. (3.27b) and (3.31).

3.7.3 Jacobian Matrix and Symplecticity Condition
The Jacobian matrix resulting from eqns. (3.35), (3.36), and (3.37) read as:

0

j o ( f Zfa pz':f70'f’p&f)
Y sol T (

zi, pi, 24, pi, ot pi)

2

(zt, pf, 2%, pf, o, pl
a(‘%f7ﬁifa ‘éfaﬁzfa o'f) AGf)

( ﬁa{a‘éfaﬁzfa&f)ﬁa-)
a( 713;;, 2i7ﬁ:7 &1713;)
29




with 7
and with
Z
Zy
Q

T

[~

[

&

oz, p, 2, ps, 6°, p2)
0

(CC,Pm,Z,Pz,U',Pa-)

= 7,2, J, (3.39)

d(z?, pl, 21, i, 0!, pl)

R N R
cos A® 0 sin A® 0 0 —2/-Z
0 cos A® 0 sinA® 0 —pf-Z
B —sin A® 0 cos A® 0 0 +z7-Z . 3.40
- 0 —sin A® 0 cosA® 0 +pf-Z | (3.402)
pf-z2  —:t.zZ —pf-Z 2172 1 Z
0 0 0 0 0 1
_ 8@, pd, %, 81,87, 0f)
- 0(& pi, 2, pl, 6t pl)
1 0 0 00 O
QQ 1 0 00 +R,
0 0 1 00 o0
_ 0 0 0 10 4R | (3.40b)
0o 0 0 o090 1
IICHY MR LY 2 N (3.40c)
6(5617 Pay 2y Pyy 0% P,;)
1Haf
L fe) H(so) - As ; (3.41a)

1+ £(6d)]”

2 [r@d] - £6d) - [+ £62)

CH(so) - As- [af - 5] — 27 5] ; (3.41b)

[+ £
1 2. Ag - C
ek [H(s0)]? - As ; (3.41c)
FOD v As. i
m [H(so)]? - A : (3.414d)

"Equations (3.39) and (3.40a, b, c) correspond to the usual factorization of the transfer matrix for solenoids
into a rotation and focussing part.
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'(62)

B = G

W =

7 [H(s0)]” - As- 2 ;

. BN =L - f(p) - [L+ f(52)]

1+ £(33)°

Using eqn. (3.40) it can be shown that:

l{ﬁll = J

= J

ie. J,, =J,J, is symplectic.

3.8 Cavity
3.8.1 Canonical Equations of Motion

For a cavity we have:

V. #£0

and

Km:Kz:g:

Using thin-lens approximation we write for a cavity of length As at position sq:

V(s) = V(so) As-b(s— so) .

Then we obtain from (2.31):

d Pe

—z = —
ds [1+f(Pa)]
—ps = 0;
ds P

d P

ds © 7 [+ f(po)]

—p: = 03

—0 = 1—f'(pa)—%

d 1 €eV(so)

= —. -As-c?(s—so)-sin[h-%r-a'—l—cp].

% pa’ - /Bg EO

[H(s0)]? - As - (&%) + (

@) + ()] £(ps)

(3.41e)

(3.41f)

(3.42)

(3.43a)

(3.43b)

(3.43c)

(3.43d)

(3.43€)

(3.431)



3.8.2 Solution of the Equations of Motion

The solution of eqn. (3.43) reads as:

ot = & (3.44a)
pl = pa; (3.44b)
7 = 2 (3.44¢)
pl = p; (3.44d)
of = o (3.44e)
P ;1 eV(so) ) 2r
Po = Pot o3 -As-sm[h-—-a —|—<,o] (3.441)
o Eo L

(see also Refs. [4, 5]).

3.8.3 Jacobian Matrix and Symplecticity Condition

The Jacobian matrix resulting from eqn. (3.44) takes the form:

oz, pf, 2%, pf, o7, pd)

- (%, pi, 2, pi, 0%, p})

1 000 0O

010000

0010 00
1000100 (3.45)

0000 1O

0000 Q1

with
2r 1 €eV(so) 2r
Q = h-f-ﬂ—g E, -As-cos[h-f-a' +go] . (3.46)
From eqn. (3.45) it can be verified that J __ obeys the symplecticity condition

ifav ' ﬁ ’ ica’u = § * (347)

3.9 Drift Space

Up to now all elements have been kicks of zero length. The actual length of the machine
is equal to the sum of the drift spaces which are in between the various kicks. Of course we
cannot ignore the length in this case. The treatment of the long drift element concludes our
chapter on magnet elements in the thin-lens approximation.
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3.9.1 Canonical Equations of Motion

For a drift space we have:

Then we obtain from (2.31) :

D

[1‘|‘f(Pa)],
= 0;

2

[1‘|‘f(Pa)],
= 0;
= 1-f(ps) 5 1+ f(po)]
= 0.

(3.48a)

(3.48b)

(3.48¢c)

(3.48d)

(3.48¢)

(3.48f)

These (nonlinear) differential equations describe the motion of the particles in the space

between the point-like lenses.

3.9.2 Solution of the Equations of Motion

The solution of eqn. (3.48) reads as:

o = 2+
pl = p;
2 = 24
p! = pl;

f %

pa‘ = pa‘ :

s

NI

7

P,

ST

2 [1+ f(ed)

33
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(3.49a)

(3.49b)

(3.49¢)

(3.49d)

(3.49€)

(3.49f)



3.9.3 Jacobian Matrix and Symplecticity Condition

The Jacobian matrix resulting from eqn. (3.49) takes the form:

ozt, pf, 2, pf, 0!, pd)

idrift = 6(:1:17 p;’ zi,pzi, 0'7:, p;)
N S Pa . pr( i,
1 7] 0 0 0 —mrtap f(ps) !
0 1 0 0 0 0
l i
. 0 L [1+7(ps)] 0 [1+f(pc)] f'(p3) -1
0 0 0 1 0 0
! !
0 [1+f(pa)] fps)- 10 [1+f(p¢,)] fl(pa)- 11 Q
0 0 0 0 0 1
(3.50)
with
N @) (02 12 L))
Q = —l-{f”(pé)—x—.z- f(p;) +——z-f (p}) (3.51)
[+ f(pi))® | | 2 1+ f(pd))
and
yi = y(so))
yf = y(SO l)a
(y = 2 Pay 2, P2, 05 Ps) -

From eqn. (3.50) it can be verified that T arige obeys the symplecticity condition

_grift -5 ldrift = 5. (3-52)
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4 Summary

We have shown how to solve the nonlinear canonical equations of motion in the framework
of the fully the six-dimensional formalism for various kinds of magnets (bending magnets,
quadrupoles, synchrotron magnets, skew quadrupoles, sextupoles, octupoles, solenoids) and for
cavities by using symplectic kicks, taking into account the energy dependence of the focusing
strength.

We have checked in each case the symplecticity condition with the help of the Jacobian
matrix.

The equations derived are valid for arbitrary particle velocity, i.e. below and above transition
energy.

Almost all these elements including higher order kicks up to 10tk order are available in
SIXTRACK using this formalism. One exception is the solenoid element which can, however,

easily be added.
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Appendix A: The Symplecticity Condition

The canonical equations of motion can be written as

d 0

L7 = -2 H
sV = St
or in component form as:
d 0
- Y, = Sl —H Th S
Y Ek: £ B (75 s)
with the notation
- T

(y1,Y2,Y3,Y4,Ys5, Ye)
= (Cca Dz, 2y Pz, O, Pa) .

We now introduce the Jacobian matrix:

_ . 7 _ Owi(s)
J = ((Tw)); Tiu(s,80) = Bya(sn)
Then it follows that :
d 0 d
E‘%k(‘s?‘so) = ayk(so) Eyz(s)
0 0
= S’Ln H _',
Enj e [ Byn(s) (¥ 3)]

62
— S ——
nz,; Ta(2:20) 9yi(s)Oyn(s)

- Z Sin'Hnl'sjlk
n,l

with
92
Huy = H(y;
! 0yi(s)0yn(s) (¥ )
or that
j('s)so) - ﬁ'ﬂ'i(swso)
with

H = ((Hi)) -

36
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Thus we have:

A 3 (s50) 8- T(s,50)} = S H-T(s,50))" ST+ (s,50) -5 {S H-T(s,5))

where we have used the relations

ﬁT = -5 >
§2 = la
HT = H

From (A.7) we obtain:

ZT(Saso) -5 Z(S,So) = const.

= lT(‘SOa 30) -5 1(507 50)

(see also Ref. [6]).
If the Hamiltonian is quadratic in y;, (¢ = 1, - - - 6), one has according to (A.3):
T(sy50) = M(s,50). (A.9)
In this case eqn. (A.8) reads as
M7 (s,50)-S-M(s,s0) = S (A.10)
representing the “symplecticity—condition” for the (linear) transfer matrix M(s, so).
We thus have proved:

Theorem I: The canonical structure of the equations of motion implies the symplecticity of
the Jacobian matrices.

We now show that the converse of theorem I is also true.

Theorem I1: The symplecticity of the Jacobian matrix implies that the equations of motion
can be written in canonical form.
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Supposition : The Jacobian matrix J (s, so) with

J = ((:ﬁ(k)));
6yis
jik(s’so) N 6'yk(30)

satisfies the symplecticity condition

JT(sasﬂ)'i'l(S,So) = S.

(A.11)

Proposition : There is a function H(g;, p;; s) so that the equations of motion can be written

in the canonical form:

d 0

el 42 .
ds T + Opr ’
d 0
el - _ Yy
ds Pr 6qk
with the notation
gT = (CU,Pm, Z, Pz, O, Prr)

= (qu, P1, 92, P2, g3, P3) -
Proof :

From eqn. (A.11) we get:
Js-J'sg-Js" = 78.8-77 8"

or

) B 3 _ _6ym(3)_ Oyn(s)
ym(3)s n(Natan) = X0 w5 S5 0

8The Poisson—brackets for two arbitrary functions f[y(s)], g[#(s)] are defined by
O S5 = | Gpuioe) Selog ~ Da(on) " el
L [2fe)] 99lg(s)]  Oflu(s)]  Ogl(s)]
dp:(s0)  9z(s0) (80) " 9p.(s0)
L [N 9glu(s)]  Of[u(s)] | Oglu(s)]
9ps(s0) 0o(so) 9o(s0) Ops(so0)

Of[y(s)] 9gly(s)]
9yi(so) Oyx(so)

Il
.Mm .

&

&
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(A.12a)

(A.12b)

(A.13)



Il
.Mw

Sik ) jmi(sa 30) ) jnk(sa 50)

k=1
3
= Z Tmi(8, 80) - Sit - Ti& (s, s0)
k=1
= mn (A14)
or
[pi(s), Pk(S)]g(so) = 0; (A.15a)
[9:(s), Qk(s)]g‘(so) = 0; (A.15D)
[pi(s), k(8)]gte0) = Gir - (A.15c)
From (A.15) it follows by differentiation that :
[Pi(5), Pr(8)]gs0) + [Pi(8)s PL(S)g00) = O (A.16a)
[9:(5), qr(8)] g(s0) + [9:(3)s 4(38)] gs0) = O3 (A.16b)
[Pi(s), ak(8)]gtso) + [Pi(5), q(S)gs) = 0 (A.16¢)
Putting s = s, the relations (A.16) lead to:
9pi(s) | Opi(s)
=+ = 0; A7
Bai(s) | Baqi(s) (A.17a)
9gi(s)  Oqi(s)
- = 0; A.17b
Opk(s)  Opi(s) ( )
Opi(s) | Ogi(s)
- = 0. A7
opu(s) " Dails) (A17¢)

Equation (A.17a) implies that the 3 functions pi(s) (¢ = 1,2, 3) form an irrotational
vector field in the space of the ¢ so that they can be expressed in this space as a gradient of a
function F(q, p) [8]:

pi(s) = 6‘; F(q,p) - (A.18a)

Because of eqn. (A.17b) a similar expression holds for the 3 functions gj(s) in the space of
the py :
(s) = 0 G(q, p) (A.18D)

q; = Op; q,p) - .

Substituting (A.18a,b) into the remaining expression (A.17c) we get :
52
—F(F+G) = 0 A.18c
B0 04 ) (A.18¢)

which means that (F + G) can be written in the form:

(F+G) = fla)+9(p) - (A.19)
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Thus in eqn. (A.18a) we can express F in terms of G:

H(s) = 5o )+ 5(p) — Gla, )
= 8(1- [f(9) = G(q, p)] -

Since eqn. (A.18b) can be replaced by

0
! - _ _
a(s) = o [f(9) = G(g; p)]
we may finally write:
(s) 2y (A.20a)
i'(s) = +o—H; 20
P 0g;
0
(8) = — H A.20b
g'(s) o ( )
with a single function
H = f(q) —G(a, p) (A.21)

which proves the canonical structure of the equations of motion (see also Ref. [9]).
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Appendix B: Thin—Lens Formalism in SIXTRACK

The single particle code SIXTRACK is based on A. Wrulich’s RACETRACK code [2] which
has been extended to six dimensions in a symplectic manner in 1987. Many new features and
extensions have been added since then, such as for instance the production of differential algebra
maps ‘ala BERZ [3]. Due to its simplicity, user—friendliness and a considerable post—processing
package SIXTRACK now has many users around the world.

In most cases the accelerator structures to be studied are given as a sequence of thick lens
elements (drifts, dipoles and quadrupoles) interleaved by thin non-linear (or linear) kicks. In
fact SIXTRACK has been mostly used in this mode and runs at very high speed, in particular
when using the vectorized version (at present no faster code is known to the authors). For
the planned new accelerators like the LHC, however, this performance may still not be good
enough. For these machines tracking runs are necessary which take single particles over millions
of turns which may take months of CPU-time even on the most advanced computers available
today. This thin-lens formalism has therefore been welcome for speeding up tracking runs
without losing symplecticity.

Of course it is also mandatory that the thin lens version allows to predict the same long-
term behaviour as the thick lens version and that both versions give about the same dynamic
aperture. The symplecticity has been proven in this report, however, the question of the quality
of the thin-lens approximation is more difficult to answer. As there is no direct proof or easy
approximation we restrict ourselves to one relevant and complex example to obtain at least a
rough estimate of the loss in precision and the gain in tracking speed.

As an example we have chosen a model of the LHC lattice (version 2) which has 1280 sets
of dipole multipolar errors (with standard values [10] of up to order 9) and 384 sextupoles for
the chromaticity correction. The lattices include the interaction zones properly, closed orbit
resulting from dipole kicks have been ignored, for simplicity the correction schemes to correct
the detuning due to the sextupole and decapole components of the dipole field have not been
applied, only one random seed has been tested, special care has been taken to ensure that both
models have exactly the same sequence of errors and a momentum deviation of about two thirds
of the bucket half-height has been considered. Note that the full nonlinear equation (3.44f) is
used in SIXTRACK.
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In Fig. 1 the survival turn numbers (before reaching 10° turns) of the thick and thin lens
lattice (40 twin initial conditions each) are shown together with the border of the onset of
chaotic motion in the full six-dimensional phase space. The agreement of the survival turn
numbers is very satisfactory and the difference of the borders of the onset of chaos for the two
cases will probably become smaller for a finer stepsize of initial conditions. The gain in speed
is 33% which is the maximum that can expected from the ratio of calculation time between the
6d linear and non-linear part respectively.

We conclude that the thin lens lattice can reproduce with good precision the long—term
behavior of a large and complex machine. We have tested only one case, but as the linear part
is almost identical and the machine is very non-linear (e.g. chromaticity is dominated by the b;
components of the dipole magnets) an accidental agreement seems unlikely. The gain of a third
in tracking speed is relevant when CPU times of weeks or months are considered. Moreover
there seems to be no penalty to be payed, neither in terms of symplecticity nor in terms of
precision.

Survival Plot for LHC Lattice Version 2
(no detuning compensation)

1.00E+05

Thick Lens
=o—Thin Lens

1.00E+04 +

2 %\/“M |
AN ‘va

Survival Turn Number

1.00E+02 .
Chaotic

Border
Thin Lens

Chaotic Border
Thick Lens Lattice

1.00E+01

s 5 ) 7 s
Amplitude [mm] at x = 100m

Figure 1: Comparison of survial times and borders of the onset of chaotic motion for thick and
thin lens LHC lattices (version 2).
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Appendix C: A Collection of Useful Formulae

The following abbreviations have been used:

t = time s = longitudinal position
e = charge of the particle mgy = rest mass of the particle
2
¢ = velocity of light B = 4/1— (m"Tcz)
1 vg = cfBo = design velocity

7:7/@

E = myy c? = energy p = Moy v = momentum

The relative energy deviation is defined as:

AE

n = T (C.1)

The canonical coordinates of the longitudinal oscillations are:
o = §—uvy-t (C.2)

and

The relative momentum deviation is:

— A
Po Po Po
) 1 mgc? 1 p-c_p
L+7) = _\/1+ 2~ P = C.5
(44) = gyf(emr = (Fpm)r= o Fm = (C5)

To stress that 77 depends on the longitudinal canonical variable p, (see C.3) we define f(p,)
as follows:

- —J(Hﬂ%-po)z— (’"E) “1 (C.6)

A series expansion of f(p,)

Fpe) = F0)+£(0)po + £1(0) 522+ (c.1)
leads to:
11,
fps) = pa—%ipai ; (C.8)



whereby we have used :

ﬂO'(1+Bg'pa)

fi(ps) = —
\/(1 + 82 o)’ — (722)
= f(0) =1
and

B85
fps) = — 3
7 - (\/(1 +8%-p.) — ("b"—o)z)

" . _i

= f"(0) = ik
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