DESY 95-189 (1995)

Construction of Nonlinear Symplectic
Six-Dimensional Thin - Lens Maps
by Exponentiation

K. Heinemann, G. Ripken, F. Schmidt*
October 25, 1995

Abstract

The aim of this paper is to construct six - dimensional symplectic thin—lens transport
maps for the tracking program SIXTRACK [2], continuing an earlier report [1] by using
another method which consistes in applying Lie series and exponentiation as described by
W. Grébner [3] and for canonical systems by A.J. Dragt [4]. As in Ref. [1] we firstly use
an approximate Hamiltonian obtained by a series expansion of the square root

{1_ [pm+H'Z]2+[PZ—H-:D]2}1/2
[1+ f(p,)]?

up to first order in terms of the quantity

[po + H 2" + [p, — H -]’
1+ f(p.)I” '

Furthermore, nonlinear crossing terms due to the curvature in bending magnets are ne-
glected. An improved Hamiltonian, excluding solenoids, is introduced in Appendix A by
using the unexpanded square root mentioned above, but neglecting again nonlinear cross-
ing terms in bending magnets. It is shown that the thin- lens maps remain unchanged and
that the corrections due to the new Hamiltonian are fully absorbed into the drift spaces.
Finally a symplectic treatment of the crossing terms appearing in bending magnets is pre-
sented in Appendix B, taking into account only the lowest order. The equations derived
are valid for arbitrary particle velocity, i.e. below and above transition energy and shall
be incorporated into the tracking code SIXTRACK |[2].

*CERN, SL-Division, Geneva, Switzerland
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1 Introduction

Continuing an earlier report [1], in this paper we show how to solve the nonlinear canonical
equations of motion in the framework of the fully six-dimensional formalism for various kinds of
magnets (bending magnets, quadrupoles, synchrotron magnets, skew quadrupoles, sextupoles,
octupoles, solenoids), using an approach different from Ref. [1], namely by applying Lie series
and exponentiation to a kick approximation [3, 4] ! .

In addition to Ref. [1] we also study the thin-lens formalism for an improved Hamiltonian
which is exact outside solenoids and bending magnets. It is shown that the thin-lens maps
obtained earlier remain unchanged and that the corrections due to the new Hamiltonian only
appear in the drift spaces.

The equations derived are valid for arbitrary particle velocity, i.e. below and above transition
energy and shall be incorporated into the tracking code SIXTRACK [2].

The paper is organized as follows :

In chapter 2 the general canonical equations of motion are derived. The thin-lens method
using Lie series and exponentiation is described in chapter 3. Using the thin-lens approximation
the equations of motion are solved for each element in chapter 4. The improved Hamiltonian is
introduced in Appendix A. In addition to Ref. [1] the influence of nonlinear “crossing terms”
resulting from the curvature in bending magnets is investigated in Appendix B and a super-
position of a solenoid and a quadrupole in Appendix C. Finally a summary of the results is
presented in chapter 5.

2 The Canonical Equations of Motion

2.1 Notation

The formalism and notation in this paper will be identical to that used in Ref. [1]. Thus
we will begin by simply stating the canonical equations of motion already used in this earlier
paper and refer the reader to the latter for details.

2.2 The Hamiltonian in Machine Coordinates
The Hamiltonian for orbital motion in storage rings reads as [1]:
H(mapmazvpzao'vpa';s) = Po — [1 + f(pa')] ' [1 + Ka: ‘T Kz : Z] X

{1_ [Pm+H-Z]2+[pz—H-w]2}l/2
[1+ f(p.)]"

—}—%-[1+Km-w+Kz-z]2—%-g-(zz—:cz)—N-wz
+%-(m3—3mz2)

+%-(z4—6w222+w4)

+i3' 27rL-h'e1]/ﬂ(:) 1o [h'%ﬁ'”ﬂo] (2.1a)

!There is a vast literature on solving differential equations by Lie series. A nice treatment is given by Ref.

[3].



with

1 ) 9 moc? ?
f(Pa) = /Q_OJ(l‘l'/Bo'Pa) —< ) -1 (2.1b)

(9o N, H, K, K,, \, and p are defined in Ref. [1]).

Since

lp + H-2z| <€ 1;
p.—H-z| < 1

the square root

[1 e+ H A+ [p —H-w]T“
L+ 7(p )Y

in (2.1) may be expanded in a series:

ll_ [Pm+H-Z]2+[pz—H-w]2]1/2 -
[1+ f(po)I"
1 [po+H 2] +[p. — H 2]’

1— - 2
2 [1+ f(ps)]

The power at which the series is truncated defines the order of the approximation to the particle
motion.

+ e (2.2)

In the following we will use (as in Ref. [1]) the approximation :

[po + H - 2> + [p. — H - z]?
[1 +f(Po)]

Po—[1+ Ko -z + K, z] f(ps) +

1
Ho= o

1
(K2 +g) o+ S [K?—g) "~ N oazt

D> N =

-(:133—3:I:z2)—|—%-(z4—6:132z2—|—w4)+

1 L eV(s) [ 2T
« COS

. . h.2D. ) 2.
82 or b E, 7 ‘Tﬂo] (2:3)

An improved Hamiltonian is introduced in Appendix A.

The canonical equations corresponding to the Hamiltonian (2.3) take the form:

d , oH
7 = _ﬁ.a_g (2.4)



with

and

-

('yla Y2, Y3, Ya, Ys, yﬁ)
(z, Pzs 2, Pz, 05 Ps)

Jos-()

1S | e
[tn

[=3 R

[n

[ [ )

or, written in components :

d
—

ds

ds T

ds

N OH
Opa
pe+ H-2z
[1+ f(ps)]
_OH
Oz

[PZ_H'J’]_ _ K2 oz -z :
Py EoEita et N2+ Ko f(p)

A
-5 @ =) -G (e —322);

OH
0p.

p.—H-z
(14 f(po)]
OH
0z
[p-+ H -2
[1+ f(ps)]
+)\-wz—%-(z3—3:czz);

_|_

-H—[K?—g]- 24+ N-z+K, - f(p,)

i
O0ps

1-[14+ K, z+K,-z]- f(p,)
1 [p.+H 2]+ [p,— H 2]’

T2 1+ f(po))? F.)

1-[1+K, z+K, 2] f'(p)

5 (@ + P 1) s

(2.5)

(2.6a)

(2.6b)

(2.6¢)

(2.6d)

(2.6e)



4 oK

In detail, one has:

a) K2+ K2#0; g=N=A=p=H=V=0: bending magnet;
b) g #0; K,=K,=N=XA=upu=H=V =0: quadrupole;

c) N#0; K,=K,=g=A=p=H=V =0: skew quadrupole;
d) X#0; K,=K,=g=N=p=H=V =0: sextupole;

e) p#0; K,=K,=g=N=AM=H=V =0: octupole;

f) H #0; K,=K,=g=N=XM=p=V=0: solenoid;

g) V #O0; K,=K,=g=N=A=pu=H=0: cavity.

3 Description of the Thin- Lens Method

3.1 Thin-Lens Approximation

The equations of motion (2.6) have the general form:

d
LY = i (Y1, Y2, Y35 Ya, Yss Ye; S) 5

(i=1,2,3,4,5,6)

%?7 = J(g; s)
with
GT = (91, 95, U3, Da, I, J6)
and
L P H(s)-z
WD = TR T T £
yis) = P- — H(s) = s S
e T 178 R TR 8 R

(po +
~[K2(s) +g(s)] -z + N(s) - 2
) 1

( 2 (5) 3 2y .
5 (2 - 2%) — 6 (2 =3z 2%);

ns) = . H(s)-z
Ja(y5s) = +[1_|_f(p0)] [l‘l‘f(Po)],

) f(Pa)

(2.6f)

(3.1a)

(3.1b)

(3.2a)

(3.2b)

(3.2¢)



vy = o Pe g Hs)z 5.
e % R (R ) Rk A
—[K.(s)* = g(s0)] - 2+ N(s) - 2
+A(s) -z — ’ME:) (2*—32%2); (3.2d)
. , 1 patp; ,
Us(y5s) = 1—[Ku(s) z+ Ku(s) 2] f(po) — 5 — =5 f(po)

2 [+ f(po))’
1 H(s)? [z? + 27 Fpy) — H(s)[pzz—p. 2]

f'(ps) 5 (3:2e)

2 [+ f(p) 1+ (s
de(y;s) = % . 61;(03) - sin [h 2% co+ go] . (3.2f)

Equation (3.1) represents a system of differential equations the solutions of which can be
written in the form :

Y(ss) = T(s5,3:)y(s:) (3.3)

by defining a transport operator T'(ss,s;) connecting the final vector y(s;) at position sy
with the initial vector y(s;) at position s;.

The aim of this chapter is now to calculate the transport map T'(sy,s;) (approximately) by
using symplectic kicks.

We achieve that in two steps:

In a first step we decompose the r.h.s. of (3.1) into two components :
J o= ot (3.4)

gathering in Jp all terms of ¥ containing the external electric and magnetic fields (expressed

by the lens functions V, g, N, H, K,, K,, A, p ).

As a result, the component Jp in (3.4) then corresponds to the Hamiltonian

1 pl+pl B
2 [+ fwo] e T &

(to be obtained from (2.3) by neglecting all external fields) leading to the (canonical) equations
of motion for a pure drift space:

Hp =

d 0
P +6pmHD(m7pﬂ~"z’pz’a-’p")
Dz
_ P 3.6a
[1+f(Pa)] ( )
d 0
%Pm = _a_wHD($7pm’z’pz’d’p")
= 0 — p, = const; (3.6b)



d_sz = +6pz 'HD(JI,PmZ,Pz,U,Po)
[1+ f(Pa)] ,
d 0
%Pz = _E HD(Ji,Pm,Z,Pz,U',Pa-)
= 0 = p, = const;
d 0
%U = +%HD(177P$727PZ707P0')
1 f,(pa)
= 1= f(po) — 5 [(p)* + (p:)" | —— "7 5
2 [1+f(Po)]2
d 0
apg = oo HD($7Pm7Z7PZ7U7p0')

= 0 = p, = const

(see also eqn. (2.6) ). The solutions for a drift of length [ are:

i

s Pe .
[1+ f(pi)]
pe;
i Pzi

z

SN

T,
p;;

Cf3)2 i\27 fI(P;) 7.
(w7 + a2y L

N | —

oo

%

y

The second component Jr corresponds to the Hamiltonian

Hi

S : SRS SR G
L+ o)) o 2 T T ()]

~[Ka vt Koo 2] £(p0) +

o]

1
[Kz+g]-2*+5[K2—g]- 2" = N-zz+

S > N

-(:c3—3:13z2)+;—4-(z4—6m2z2+w4)+

(3.6e)

(3.60)

(3.7a)

(3.7b)

(3.7¢)

(3.7d)

(3.7e)

(3.7)



1 L eV(s)

- COoS [h-%r-a—l—go] (3.8)

containing the remaining terms in eqn. (2.3). In particular there are no p? or p? terms.
Thus we have

H = Hp+Hp
and
. 9
3n = —g. 2
D S a?jHD,
> 0
g, = -5 2
L o4 6'!,7HL’

where the matrix § is given by eqn. (2.5).

In the second step we replace the function J in (3.4) for a thin lens of length As at position

S0 bY [1]
Fmod(F;8) = :D(z7>+1§L(y*;s>-As-a(s—sO>
= Ip(§) + I1(F; s0) - As - 6(s — s0) (3.9)
with
S(7: - _8 67% 3.10
(¥;80) = —5- g (3.10)
and
Hr = Hi(d;s0)
_ H(so) a1 HYso) ra . )
= TG PPy gy

[Ka(s0) - 2 + K.(s0) - 2] - f(ps) +

L 1K (50) + g(50)] - 2 + = [K%(s0) — g(s0)] - 2% — N(s0) - 2 +

2 ° 2
A
(;’0) -(m3—3mz2)—|—#(210) -(z4—6m2z2+:n4)—|—

1 L eV(SO
/Bg 2w - h Eo

)-cos[h-%-o‘-l-cp] , (3.11)

whereby the new function Jmod in (3.9) results from the modified Hamiltonian
Hmoa = Hp+Hr As-86(s—so) . (3.12)

In order to solve eqn. (3.1) using the modified function 1§’mod in (3.9), we then have to
decompose the region

As< < —|—AS
So 2 ~ 8 =~ S8 2

10



of the lens into three parts:

A
region I : s9— 78 < 5 < 59—€; (3.13a)
region IT : s9p—¢ < s < 59+ ¢€; (3.13b)
A
region [IT : so+e< s < 59+ 73 ; (3.13¢c)
(0 <e—0).

A
For region I and III we obtain a drift space of length [ = 78 , described by the differential

equation

d | -
gy(s) = 9p (3.14)

the solution of which is given by eqn. (3.7) and may be expressed by a transport operator

Tp(1).

The equation of motion for the central region II reads as:

3—3?7(3) = JL(ﬁ; So) - As-8(s — so) (3.15)
with
(T2)T = (P12, F1a, Prs, V14, V15, V1e)
and

— 6 »
ﬂLl(y; ‘50) = +5— HL(mapma 23Dz U,p,)

O0pe
B H(so)- = ‘ N
= i ) (8:162)
B 0) = o Halw,per 7,0 0,20)
P gy Hso)z
= i ] T T ) )
+K.(s0) - f(po) — [K2(s0) + g(s0)] - @ + N(s0) - 2
)‘(30) 2 2 :“(30) 3 2y .
T(w —2%) = 6 (z°—3x2%); (3.16b)
. 0 -
Vr3(Y;80) = +ap Hi(z, Pey 2, P2y 0, Po)
L H(so)-w . .
= TG (3.16¢)
19L4(g’;30) = _%ﬂL(m7pmz7p27a7p0')

11



B Do CH(s H(so) z
T+ G T T T Gy )
FEo(s0) - £(pa) — [K3(s0) — g(s0)] = + N(s0) - =
+A(80) - ¢z — #(630) . (z3 — 3z z); (3.16d)

. o -
79L5(y;30) = +$HL($7PMZ7PZ7U7P0')

= —[K.(s0) z+ K.(s0) 2] f'(ps)

_E_H(Sﬂ)z'[wz-l'zz]_ ! _H(SO)'[pm'Z_pz'm]. ! 3.16e
AT TR U A (0 A
19L6(37; 30) = _68_0_ ”F(L(m,pm,z,pz,a',pa)
1 eV(so) . 2T
— @-To-sm[h-f-a—l—(p] (3.16f)

(see eqns. (3.10) and (3.11) ) and determines the transport map
IL = I(So + 0,30 - 0) (317)

of region II.
Finally the transport map of the whole lens takes the form:

T(so+ As/2, so — As/2) = Tp(As/2)- Ty -Tp(As/2) (3.18)

corresponding to the decomposition of the length As into three parts (see eqn. (3.13)).

Note that the (nonlinear) transport maps T'p and T corresponding to (3.14) and (3.15)
and thus also T'(so + As/2, s — As/2) in (3.18) are automatically symplectic for an arbitrary
As due to the canonical structure of the equations of motion (see also Ref. [4] and Appendix
A in Ref. [1]).

In the limit

As — 0

one obtains the exact solution of the canonical equations of motion corresponding to the starting
Hamiltonian (2.3).

Since Tp is already known from eqn. (3.7) we are left with the problem of calculating the
transport map T'; by solving eqn. (3.15). This is done in the next section, using a Lie series
and exponentiation.

3.2 Integration by Lie - Series
3.2.1 General Autonomous Case

In the thin-lens approximation the equations to be solved are not autonomous but the
s-dependence is trivial which reduces the calculation to an autonomous system.

12



An autonomous system of differential equations of the form:

d < o -
-—Y; = 191 ) g ey Yn) 3 —’191': H 1
.Y (1, ¥2 YR 0 (3.19)
(:=1,2,...,n)
(no explicit s dependence) where the terms J; (y1, Y2, - .., Yn) represent analytical functions,
can be solved by Lie-series [3]:
yi(s) = elbm0)lly, (3.20a)
with
T e .,y 0 3 e .,y 0 Z e s . 0
D = 90, b -5 Gn) e+ 02 (G0, G2y - dn) o e I (G0, G2, - )
Y1 ep FYn
(3.20b)
and
vi(s0) = Ui . (3.20c)
Applying this result to the canonical equations of motion :
= 0
'191 - +ap H(zapmazapzaaapa);
z 0
192 = _a_wH(mapmazapzao-apd);
- 0
vy = +6p H(w,Pm,Z,Pz,U',Pa-);
= 0
194 = _EH(mapmazapuUapa’);
z 0
'195 - +$H(mapmazapzao'7pa);
= 0
196 = _% (w,Pm,Z,Pz,U,Pa)
we obtain :
yi(s) = z(s) = els=2) D 5 . (3.21a)
ya(s) = pa(s) = 0P, (3.21b)
ys(s) = z(s) = els=%0)D 2 . (3.21c)
ya(s) = pu(s) = 70 Pp, (3.214d)
ys(s) = o(s) = e®=s)D 5 . (3.21e)
ye(s) = po(s) = el=)Pp, (3.21f)



with

and

Remarks:

1) Using the notation of Ref. [4], eqn. (3.20a) may also be written in the form:

9 . .10 [8 . -] 0
= (65 )] 55 - la.»e H(y)] Opx
o . -]10 [0 .,-] 0

55, 79| 55~ [az H(y)l 5.

0 . 210 [6 ., -] 0

T 55 M) 55 - la& H(y)l 0%
¢ = z(s0); Pa = Px(S0) ;
z = Z(SO) ) pAz = Pz(so) )
& = 0(8o ) pAa' = Pa(so)

e (s—s0)H: 4

yi(s) = Yi

(3.22)

(3.23)

if the autonomous equations of motion result from an Hamiltonian . So when the approach in
Ref. [3] is restricted to canonical systems it is identical to the Lie Algebra method introduced

by Dragt.

2) Since the equations of motion (3.6) for a drift space represent an autonomous system of
differential equations, eqns. (3.20a, b, ¢) can be used to determine the transport map T, of a

drift space.

In this case we get by comparing (3.19) with (3.6):

This leads to

y2
[1+ f(ye)]

0;

Ya .
[T+ f(ys)] '

L= fl) - [0+ ud] )

yi(so+1) = P

14

[ fe)

(3.24a)
(3.24b)
(3.24¢)

(3.24d)

(3.24e)

(3.24f)

(3.25a)



with

- o . ~ s 0
D = 9 (9) —+93(9) — +9:(9) - — 3.25b
1 (y) 541 + v (y) 593 + Vs (y) Js ( )
and
9 = yi(so) - (3.25¢)
We then have:

. U2
D _ _ : 3.26a
Ty 8] (3:262)
Dy, = 0; (3.26b)

. 7a
Dy; = — ; 3.26¢
=[£G (8.26¢)

. A Lo, f' (%)
Dis = 1—f(46) — = - [92 + 92] — ; 3.26e
5 ( 6) 2 [ 2 4 [1 +f(y6)]2 ( )
Dgs = 0 (3.261)
and
D”yj = 0 for v > 1.
Thus :

(so+1) = [L+1-D]g. (3.27)

Putting (3.26) into (3.27), we regain eqn. (3.7).

3) The method for calculating thin-lens transport maps described in this paper works also
in the presence of nonsymplectic terms resulting for instance from radiation damping [5]. One

must simply include these terms in D before expanding exp [ﬁ]

3.2.2 Calculation of the Thin - Lens Transport Map for the Central Region.

In order to determine the transport map T'; for the central region, we investigate the
special case:

1'91(:17) = (s —s0)- Fi(¥) ; %Fz =0. (3.28)

15



Replacing the § - function §(s —so) in (3.28) by a step function of height (1/2¢) and length
(2¢), we obtain in this case from eqn. (3.20):

i) = {ew[e—ls—e)-5- D]}

for (so—€ < s < 89+ ¢)

with
j = glso—c)
and
b= @ 24 RE) 2+ 4R (3.29a)
— L . ce . . 920a
85 Y By, " g6
In particular by putting s = so + € we have:
S 1 -1 =
Y(so+€) = {exp [([so + €| —[s0—¢€])- P D] } i
= {ew D1},
which leads in the limit ¢ — 0 to:
§(so+0) = {exp[D]}y
with
’!5 = :I;’(So — 0) .
Then by choosing the functions F;(y) appearing in (3.29a) as:
Fi(y) = Y5i(7;50) As, (3.29b)

with d7,(¢;s0) given by (3.16), one just gets the transport map T'; corresponding to eqn.
(3.15) in the form:

T; = exp [D] (3.29¢)

as may be seen by comparing (3.28) with the r.h.s. of (3.15).

Remark:

The relation (3.29c) for T'; can also be derived by solving the differential equation :
]_ —

d — T [~ _ —
LY = dr(y;s0) = N F(y), (3.30)

which does not contain the §-function §(s — sg) anymore. Writing the solution of (3.30) in
the form

§(s) = T(s, s0)¥(s0) , (3.31)
16



one then obtains:

T, = T(so+ As,sg), (3.32)

as can be verified by compararing (3.29) with (3.20) and using (3.19).

By (3.30) we see in fact that for the central region II the problem reduces to an autonomous
one.
For an example see Remark 2) at the end of Appendix C.

4 Thin-Lens Approximation for Various Kinds of Mag-
nets and for Cavities

In this section the thin-lens transport map corresponding to the central region II (see eqn.
(3.13) ) is calculated for cavities and for various kinds of magnets.

4.1 Quadrupole
4.1.1 Exponentiation

For a quadrupole we have:

and

Then we obtain from (3.16) and (3.29b):

Fl(i'j) = 0;
F(y) = —g(so) As-z;
Fa(i'j) = 0;

F5(?7) - Oa
Thus:
A - 0 s 0
D = Fyy) — + Fu(9) — 4.1
) 5+ i) 5 @)



and

0
Fy(§)
- 0 -
hi = | = 43 42
6 )
0
0
with
0 0 0 00O
—-g 0 0 00 O
; 0 0 0 00O
4 =81 g g 4900 0 (4.3)
0 0 0 00O
0 0 0 00O
The transfer matrix M defined by
Jlso+0) = Miy(so—0) = Mj
reads as:
M = epld
= 1+4 (4.4)
since
DA = AD = D”; = Av§ = {exp[ﬁ]}g; = {exp[A]}§
and
AU = 0 for v > 1
4.1.2 Thin - Lens Transport Map
From (4.4) we obtain ? :
o =
pl = pi—g(s0) As-2;
4 = 2

2See also section A.2.2 in Appendix A, where a superposition of quadrupoles, skew quadrupoles, bending
magnets, sextupoles and octupoles is investigated.
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with

4.2 Skew Quadrupole
4.2.1 Exponentiation

For a skew quadrupole we have:

and

Il
]
~
&
(=]
+
o
SN—

= &y Pzy 2y Pzy O, Po-) .

Thus we get from (3.16) and (3.29b):

Thus :




and

hi -
with
A = As-
The transfer matrix reads as:
since
and
AAV

4.2.2 Thin -Lens Transport Map

From (4.8) we obtain :

0
Fy(3)
0 -
S = Ag 4.6
F4(3/) ( )
0
0
0 0 0 00O
0 0 N0 OO
0 0 0 00O
N 0 0 000 (4.7)
0 0 0 00O
0 0 0 00O
M= ewld
= 1+4 (4.8)
DA = AD
= 0 for v > 1.
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4.3 Bending Magnet
4.3.1 Exponentiation

For a bending magnet we have:
K:+K? # 0; K,-K. =0

and

Fl(']j) - 0,
Fg(gj') = —[Km(so)]z-As-:c—I—Km(so)-As-f(pd),
Fg('!j) = 0 )
F4(37) = —[Kz(so)]2-As-z—I—Kz(so)-As-f(p,);
Fs(§) = —[Ku(s0) 2+ K.(s0) 2] As- f'(ps) ;
Thus :
A > 0 - 0 > 0
D = Fy(y) — + Fu(y)  — + F5(y) - — 4.9
) ot B B o (49
and
0
Fy(3)
. 0 -
Dy = - = Ay 4.10
y £() g (4.10)
Fs(9)
0
with
0 0 0 00 0
—-K? 0 0 0 0 K, f(ps)
- 0 0 0 00 0
A = As- 0 0 _K? 00 K.-f(p) (4.11)
-K,-f'(p-) 0 —K, -f'(ps) 0 O 0
0 0 0 00 0



The transfer matrix reads as:

M = ewld
= 1+A (4.12)
since
DA = AD
and
A" = 0 for v >1.

4.3.2 Thin -Lens Transport Map

From (4.12) we obtain :

;cf::c;

pl = po—[Ka(so)]" As-a’ + Ku(s0) - As- f(py) ;

pl = pl—[K.(s0)]" - As-2' + K.(s0) - As- f(p7) ;
of = o-i—[Ka,-mi—l—Kz-zi]-As-f'(pi);

pl = p;.

4.4 Sextupole
4.4.1 Exponentiation

For a sextupole we have:

and
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From (3.16) and (3.29b) we then get:

R(y) = 0;
F(y) = _%A(SO)'AS'[mz—zz];
Fy(y) = 0;

Fiy) = Aso) As-zz;

Fs(y) = 0;
Fs(y) = 0.
Thus:
A > 0 o 0
D = Fy9y) — + Fu(y) - — 4.13
2(y) (9']}2 + 4(y) 6’!}4 ( )
and
0 0
Fy(3) 0
Dj = 0 975 = | Y| for v > 1 (4.14)
Fy(g) |’ 0 '
0 0
0 0
=4 {exp [D]} :1? = g:/'—{— D; . (4.15)

4.4.2 Thin -Lens Transport Map
From (4.15) we obtain:

of = o,
= »,
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4.5 Octupole
4.5.1 Exponentiation

For an octupole we have:

and
K. = K, =g=N=)X=H=V =0.

Then we obtain from (3.16) and (3.29b):

Fy) = 0;
. 1 3 2
F(y) = —g,u(so)-As- [a: —3J:z] ;
Fs(y) = 0;
— 1 3 2
Fi(y) = —g,u(so)-As- [z —3z z] ;
Fs(y) = 0;
Thus :
R 0 0
D = Fy(j Fy(9) - — 4.1
) o+ ) (1.16)
and
0 0
Fy(#) 0
A2 0 Ay R 0
Dy = F@») ;. DYy = 0 for v > 1 (4.17)
4
0 0
0 0
= {exp [D]}§ = §—|— Dg?; (4.18)
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4.5.2 Thin - Lens Transport Map
From (4.18) we obtain:

1 :
pl = pi- gulso) Ase [(Z)° =3 () ()] 5
of = a",
o= p

4.6 Synchrotron - Magnet
4.6.1 Exponentiation
For a synchrotron magnet we have:
g # 0; KX+K2 £ 0 with K, K, = 0 (4.19)
and
N =X=upu=H=V=0.
We thus obtain from (3.16) and (3.29b):

Fi(y) = 0,
Fy(§) = —Gi(so)-As-z+ Ko(so)- As- f(ps) ;
F3(y) = 0,
Fo(§) = —Ga(so)-As-z+ K,(so) - As- f(ps) ;

Fi(y) = [Ko(so) 2+ Ki(s0) 2] - As- f'(ps) 5
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Thus :

. > 0
D = Fyy) —
2(y) 8'!!2
and
Dy =
with
0
_Gl
A = As-

0
0

Ks - f'(bs)
0

The transfer matrix reads as:

=

since

and

[
Il

4.6.2 Thin-Lens Transport Map
From (4.23) we obtain:

z = =

o . 0
Fy(§) - = + Fs(3) -
+ 4(y) 6'!;4 + 5(y) 6,!’}5
0
Fy(9)
0 A =
2 = Ay
R |~
F5(3)
0
0 0 00 0
0 0 00 0
0 — G, 0 0 K.-f(po)
0 K. -f'(p,) 0 0 0
0 0 00 0
= exp[/i]
= 1+4
A = AD

pl = pi—Gi(so) As-z'+ Ku(s0)  As- f(p;) ;

pzf = p:—Gg(So)ASzz‘}‘Kz(sO)Asf(p;) )

af = & — [Ko(so-z+ K,(s0)- 2] As- f’(p;) ;

pl = pi.
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4.7 Solenoid
4.7.1 Exponentiation

For a solenoid we have:

and
K, = K, =g=N=X=p=V=0.

Using then (3.16) and (3.29b) we obtain:

L H(so)-As.z_ X
F(y) = o f] (4.24a)

L H(so) As o — Hiso) -zl -
Fy(y) = Tt ] [p. — H(so) - 2] ; (4.24b)
— o H(So) - As - .
Fy(y) = Tt ) " (4.24c)

W~ H(so) - As . R
Fy(y) = “Et @l [pe + H(s0) - 2] ; (4.24d)
L H(s)-As  f(p,) (1 o) - [2? 4 22 A | O .
RO = ] e oy (7O e s el (4200
Fe(y) = 0. (4.24f)

Thus:
D = F(j) 86—?}1+F2(y) 86—?;2+F3(y) 68—?73+F4(37)-66—?}4+F5(§)-6‘9—375 (4.25)
and
b p; = ? Zg; = 4, p; ; (4.26a)
P Fy(3) p

D& = Fy(§); (4.26b)
Dp, = 0 = {exp[D|} 5, = po (4.26¢)
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with

0 0 +H 0
A 1 _H> 0 0 +H
40"A5{L+ﬂ@ﬂ' ~“H 0 0 0

0 —-H —-H*> 0

We decompose the matrix Ao into the components Ao1 and Aozi

Ao = AAm +Aoz

with
0O 0 0 O
. H? -1 0 0 0
A = As- .
£o1 A f@ | 0 0 0 0
0 0 -1 0
and
0 0 +1 0
o H 0 0 0 +1
A = A
Agy S T F(5o)] 1 0 0 0
0 -1 0 0
The transfer matrix for
T
o = |7
p
reads as:
My = e A
since

DAy, = AeD = D*§, = A5, = {exp[D]}d =

and
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as well as

2n

0 0 1 0
0 0 01 n
-1 0 0 0 = (_1) 15
0 -1 00
0 0 1 0\ 0 0 10
0 0 01 — (1) 0 0 0 1
-1 0 00 - -1 0 00
0 -1 00 0 -1 00
we get :
cxp ] =
> Aoy
n,=0 (2‘TL)' B
0 0 41 0
- 1 0 0 0 +1
A _ln_ A 2n+1
+n§0 (2n + 1)! (=1)"-(A0) -1 0 0 o0
0 -1 0 0
0 0 +1 0
_ 0 0 0 +1
= 1-cos(AO®)+ 1 0 0 0 sin(AO)
0 -1 0 o0
cos(AO) 0 +sin(AO) 0
_ 0 cos(AO) 0 + sin(AO)
- —sin(AO) 0 cos(AO) 0
0 —sin(AO) 0 cos(AO)
with
H - As
AO = —————, 4.32
1+ £(5r)] (4.32)
Therefore :
cos(AO) 0 +sin(AO) 0
_ . 0 cos(AO) 0 +sin(AO)
MO - [l+A01] —SlIl(A@) 0 COS(A@) 0 (4.33)
0 —sin(AO) 0 cos(AO)
For the variable o we get from (4.26b):
D2& = DF5(§)
- 0 - 0 5 0 S~ 0 5
= SF()) — + Fo(9) — + F5(9) - — + Fu(vy) - — ¢ F5(7
{ 1(y) Ot Z(y) 092 3(y) 093 4(y) 6y4} 5(y)
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H-As [, 0 . .. 0 .0 5
- m{ .8—??1_[H.y1_y4].5—g)2_y1 33 —[H - ys-l-yz]'a—m}
(—H) f'(ps) - As A }
{ 1+ £( a)] 2H (y1 +ys)+(yz Yz — Ya yl)]
_ _H-As (-H) f(b;) As
[1+ f(ps)] 1+ f(ps)]
X {93 [H 91— 9a] — [H 91 — ] 93 — G1 - [H - §3 + Go| + [H - J3 + o] - §1}
= 0;

= {exp[D]}s = &+F5(§)+%.DF5(§)+...

~ 51 R). (4.34)

Remarks:

1) We have used a separation of the matrix Ao into the components Am and Aoz with
A(n 'Aoz - Aoz 'Am
and
A,, nilpotent .

Since in addition Aoz is diagonalizable, eqn. (4.28) represents an additive Jordan decomposi-

tion.

2) The decomposition (4.28) factors M, into a rotation map and a focussing map.

4.7.2 Thin - Lens Transport Map
Equations (4.31), (4.34) and (4.26¢) finally lead to:

?jof = Mo:'?(f; (4.35&)

of = o _ fI(P;) .

= Ty A°
A HGo) [ 4 ] 4 i piea]) s (assh)
pl = »; (4.35¢)
with
Ao = H(s)-As (4.35d)
ENIen) |
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and M, given by (4.33), where the matrix AAm appearing in (4.33) takes the form:

0 0 0 O
. -1 0 0 0
AOI = A@ . H(Sg) . 0 0 0 0 (4.356)
0 0 -1 0
(see eqn. (4.29a) ).
In Appendix B the superposition of a solenoid with a quadrupole is investigated.
4.8 Cavity
4.8.1 Exponentiation
For a cavity we have:
V £ 0
and
K, = K, =9g=N=X=up=H=0.
Then we obtain from (3.16) and (3.29b):
Fl('.’;) - Oa
FZ('.’;) - Oa
F3('.’;) - Oa
F4(?7) = Oa
FS(ZJ) = Oa
S 1 €V 2
Fe(y) = ﬂ_g.elg:()) sm[h-% a'+<p] As
Thus:
R - 0
b= RG) 2 (4.36)
Ye
and
0 0
0 0
A2 0 AL 0
Dy = 0 i D = |0 for v > 1 (4.37)
0 0
Fo(9) 0
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= {exp [D]} '5 i J . (4.38)

Il
@
_|_
)
@

4.8.2 Thin -Lens Transport Map

From (4.37) and (4.38) we obtain :

o =

pl = p;

2 = 2

pl = »pl;

of = o

pl = pit - eVlgSo) sin |k 2 o+ |- As
0 0

5 Summary

As a continuation of Ref. [1], we have shown how to solve the nonlinear canonical equations
of motion in the framework of the fully six-dimensional formalism using Lie series and exponen-
tiation. Various kinds of magnets (bending magnets, quadrupoles, synchrotron magnets, skew
quadrupoles, sextupoles, octupoles, solenoids) and cavities are treated, taking into account the
energy dependence of the focusing strength.

In Appendix A we have introduced an improved Hamiltonian (Appendix A). which is exact
outside bending magnets and solenoids.

Since the equations of motion are canonical, the transport maps obtained are automatically
symplectic.

The equations derived are valid for arbitrary particle velocity, i.e. below and above transition
energy, and have been incorporated into the computer program SIXTRACK.
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Appendix A: Thin - Lens Approximation with an Improved
Hamiltonian

In chapter 4 we have used an approximate Hamiltonian which is obtained by a series
expansion of the square root

{1 Clpet Ho 2+ [p - H-m]Z}”Z
[1+ £(p))”

up to first order in terms of the quantity

[p. + H - 2>+ [p. — H - a]?
[1+ f(ps)]”

The aim of this Appendix is to repeat the calculations of chapter 4 in the absence of solenoids
with an improved Hamiltonian by using the unexpanded square root. The new Hamiltonian
is again decomposed into a lens part H; and a drift component Hp. Then we apply the
thin - lens approximation described in chapter 3 by defining the modified Hamiltonian

Hmoa = Hp +Hp-As-8(s — so)

(see eqn. (3.12)) and solve the equations of motion resulting from the improved Hamiltonian
for the regions I, IT, and III of eqn. (3.13). It is shown that the thin-lens maps for the central
region II obtained earlier remain valid and that corrections induced by the new Hamiltonian
only appear in the solutions of the drift spaces (regions I and III).

The improved Hamiltonian introduced in this Appendix is exact outside the bending mag-
nets. Inside a bending magnet we neglect nonlinear crossing terms resulting from the curvature.
These terms are investigated in Appendix B.

A.1 The Improved Hamiltonian

In the absence of solenoids the Hamiltonian for orbital motion in storage rings takes the
form :

P2+ p? 1/2
'H:c,pm,z,pz,a,p,;s - pa'_[]-‘|‘fpa-]'[1+Km'$+Kz'Z]'{1—¥}
( ) ( ) [1‘|’f(Po)]2

—I—%-[1—}—Km-w+Kz-z]2—%-g-(z2—m2)—N-mz
+%-(:c3—3:cz2)

+:—4-(z4—6:c2z2—|-w4)

+ig.271—L.h : 61;(03) - cos [h-zfﬂ--a%-go] (A.1)

(see eqn. (2.1)).
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If we neglect nonlinear crossing terms containing the factors K, -z and K, - z we may write:

2 2 1/2
—[1+f(p,)]-[1—|—K,,-:c—|—Kz-z]-{1—%}

2 2 1/2
- )y Petp: B _ z .
s g {1 B ) s K ).

Then we obtain:

P+l }1/2
1+ f(ps)]?

_[Km'$+KZ'Z]'f(P0)

o= =) {1

1
t5K: g2’ + S [Kl—gl- 2" =N -z2

S > o=

+ -(z3—3wz2)—}—:—4-(Z4—6w2z2+z4)

4 i L eV(s)

- cos [h-%r-a'%—go] (A.2)

(constant terms which have no influence on the motion have been dropped).

In particular we get for the Hamiltonian of a drift space :

P2+ p? 1/2
H LyPry2yPzy0,Po3S = Do — 1+fpa {1_#} ’ A3
ol ) 14 Aol {1 - PR (A3)
and the lens component of H :
Hr = H-—"Hp
then reads:
HL(-’B,Pm,Z,Pz,O',Pa;S) = _[Km'm+Kz'z]'f(p0)
| 2, 1l 2
—I—i-(w3—3wz2)—|—i-(z4—6:n2z2—|—:134)
6 24
N 1 L eV(s) [h T N ] (A.4)
82 o b By O 7re
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A.2 Equations of Motion
A.2.1 Drift Space

The Hamiltonian (A.3) for a drift space leads to the canonical equations of motion:

d OHp
s’ i O0p=
_ L e 7 (2p)
= g {1 [1+f(pa]2} 17 )P
2 2 -1/2
Pyt P De
_ _ z z . . A.ba
+{1 [1+f(pa)]2} Tt fpo)] (4.52)
i oMp
ﬂpm T Bz
= 0 = p. = const; (A.5D)
d OHp
ds® = +8pz
2 2 -1/2
Py TP P
_ _ z z R A.5c
+{1 [1+f(pa)]2} T fGo)] (A5¢)
d  9Hp
Epz T 0z
= 0 = p, = const; (A.5d)
d OHp
as’ T +(9p(,
2 2 1/2
IRV P i
= 1) {1 [1+f(pa)]2}
_ Lf o e T 2Bl
1+ #e)] 2{1 [1+f<pa>12} i+ fol)e | ®)
2 2 1/2
Y D
= 1= f) {1 [1+f(pa)]2}
2 2 -1/2 2 2
J,  ptP S A
{1 [1+f(pa)]2} i+ s T @)
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\ y -1/2
= 1- f(p,) {1 [1+f(pa)]2} ’

d _ _OHp
dspa - Oo

= 0 = p, = const.

The solution of eqn. (A.5) for a drift space of length ! reads as:

o e e e
- +{1 [1+f(p:;)]2} N

Pa = DPa;

f_ g {1 [<p:;>2+(p:'>2]}‘”2 p:

S S () B e )
rl = p;

i\2 i)21) 71/
o = iy l—f'(Pi)'{l_%} ].l;
pl = p-

Remarks: 1) Using (A.5a) and (A.5c), eqn. (A.5e) may also be written in the form:

d

o = 1= f(p) 1+ (@) + (=) .

This result can be obtained directly from the defining equation for o :

o = s—vo-t(s);
4 dt
s’ Y0 s

with

1
dt = = -/ds?+ dz? + dz2
v

and leads to

d _ Yo 2 2
o = 1—?-\/1—{—(:0) +(2)?,
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(A.50)

(A.6a)

(A.6b)

(A.6c)

(A.6d)

(A.6e)

(A.60)

(A7)

(A.8f)



which agrees with eqn. (A.6), since

(see Appendix C in Ref. [1]). Since

\/].-|-(CC/)2-|—(Z/)2 ~~ 1_|_%[(w/)2_|_(z/)2],

one may write:

This approximation was used in Ref. [1].

2) As in Ref. [1] one obtains for a drift space:

Ss) = const. = als) = a(so)+2(s0) (s — ) ;
Z'(s) = const. =  2z(s) = z(so) + 2'(s0) (s —s0) ,

= z, z)is modified

(see eqns.(A.5a,b) and (A.5c,d) ) but the connection betwenn y’ and py (y

(see eqns.(A.5a,c) and (3.7a,c)).

A.2.2 The Central Part

The equation of motion for the central part (region Il in eqn. (3.13) ) due to the Hamiltonian

(A.2) reads as:

i) = F(g) 8(s - s0)
with
F(§) = Jr(7s0) As

and with JL(,?];.S) given by :

0
V175 =
Ll(y) S) +8pm

HL(mapma 2yP2,0,Po; ‘S)

. 0
191/2(% S) = _8_56 HL(wapma 230250, Po; 3)

= +Ka(s)- f(po) — [K2(s) + 9(s)] -2+ N(s) - 2
_&_(mz_zz)_ﬂ(s) (2® =3z 22);

2 6

0
Ira(F;s) =
LS(y) S) —I_apz

HL(«’B,Pm Z2yPz5 0, Po S)
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. 0
7-9134(y; 3) - _g HL(J:7P:E7 Z23Pzy0,Pos S)

— Ks) - £(p0) — [K2(s)— g(s) -2+ N(s) 2
+A(s) -z — @ . (23 — 3z z); (A.104d)

. 0
ﬂL5(y; S) = +£ HL($7pm7 Z23P2,0,Po; 3)

= —[Ki(s) =+ K.(s)- 2] f(ps) ; (A.10¢)

ﬂLG(ﬁ;s) - _8_0_HL(£E7P1:727PZ70-7P0;5)
1 eV(s) 27

= ﬂ—g- . -sm[h-L

resulting from the Hamiltonian Hy in eqn. (A.4).

o+ (A.109)

Since the relations (A.10a-f) coincide with eqns. (3.16a—f) in the absence of solenoids
(H = 0), the thin-lens transport maps calculated in sections 4.1-4.7 remain valid also for the
Hamiltonian (A.2). Thus the corrections resulting from the new Hamiltonian are fully absorbed
in the solutions for the drift space as can be seen by comparing (A.6) with (3.7).

As an example we consider the superposition of quadrupoles, skew quadrupoles, bending
magnets, sextupoles and octupoles and obtain from (A.10):

Fi(y) = 0,
B = {Kulon) £20) = Galoo) 2+ N(so) 2 = 22 a7 =)
fi(50) 3 2
6 (z —3a:z)} As ;



Thus :

. 0 0 > 0
D = F(3)- 2 L F(d) 2 L F(3) . .
2(y) agz + 4(y) 6’!;4 + 5(y) 6@5
We then have:
D’!}l - 0,
S oa ) _ ) ) _>‘(30)_ 2 _ 2
Dy, = (K.(s0)- f(ps) — Gi1(s0) -+ N(so) - 2 5 (z z%)

Dgs = {K.(s0) - f(ps) — G2(s0) - 2+ N(s0) - = + A(s0) - z2

6

Djs = [Ku(so) -+ K.(s0) 2] f'(ps) - As ;

Dygs = 0
and
DYy = 0 for v > 1
Thus:
§(so+0) = §+Dy
with

and b; given by (A.12).

(A.11)

(A.12a)

(A.12b)

(A.12¢)

ECON (z* — 327 z)} -As;  (A.12d)

(A.12¢)

(A.12f)

(A.13)

Equation (A.13) contains as special cases the transport maps of simple quadrupoles, skew

quadrupoles, bending magnets, sextupoles and octupoles which are identical with those already

derived in section 4.

Remarks:
1) As in chapter 4 the transport maps
J(m-ge) = 7 (g
s — —As)] — S0+ = As
Y \So 2 Y|S0 2
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described by a composition of (A.6) and (A.13) (combining the regions I, IT and IIT in eqn.
(3.13) ) are symplectic for an arbitrary As due to the canonical structure of the equations of
motion. Furthermore one obtains the exact solution corresponding to the Hamiltonian (A.2)

for As — 0.

2) The Hamiltonian (A.2) is exact for a straight section with
K, = K, =0,
i.e. outside the bending magnets. For a bending magnet with
K:+K?! # 0; K, K, =0
the exact Hamiltonian reads as:

p:+p’ }1/2
))?

Hiend = po — |1 o) 1+ Ky -z+ K, 2|-¢1—
ot = B S 4 K o] {1 P

1 , 1
+§'[1+Km'$+Kz'Z] )

s 5 N1/2
_ HD—[l—I—f(Pa)]'[Kw'm"'KZ'Z]'{I_Lpz)]z}

[1+f(pcr

+[Km-a:+Kz-z]+%Kﬁ-m2+%Kzz-z2
= Hp

2 2 1/2
—[1+f(pa>]-[Km-m+Kz-z]-({1—%} —1)
—f(p,)-[Km-:c—l—Kz-z]—l—%K:-:cz—l—%Kzz-zz (A.14)

with
2 2 1/2

Ho = =[S {1- BB (A15)

The drift part Hp of the bending Hamiltonian coincides with eqn. (A.3). Thus for the
regions I) and IIT) we have again the solution (A.6).

For the central part described by the equations:

— 8 »
P11(Y; 80) = +6p Heend(Ty Py 2,02, 0y Do) (A.16a)
— 6 »
V12(Y; 80) = e Heend(Z, Pay 2,02, 0, D5 ) (A.16D)
P13(y;80) = + ﬂbend(m,pm,z,pz,a,pa) ; (A.16¢)

0p.
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0

V1a(Y; 80) = ~ 3, ﬂbend(m,pm,z,pz,a’,p,) : (A.16d)
. 0 -

P15(Y; 80) = —I—£ Heend(Z, Pay 2,02, 0y Do) (A.16e)
. 0

V1e(Y; S0) = —%Hbend(a:,pm,z,pz,a',p,) (A.16f)

(see eqns. (3.10) and (3.11) ) we obtain the Hamiltonian :

2 2 1/2
ﬂbend = - [1 + f(pa')] ' [Km(so) ‘z+ KZ('SO) ' Z] ' ({]‘ - %} - 1)

(o) [Kels0) 2+ Kufs0) 2] 4 5 [Kalso)l? -2 4 5 [Ka(so) 27 (AD)

Using (A.9b) and (3.29), we can calculate y(sp + 0) up to an arbitrary order by a series
expansion of exp [D]. This shall be done in Appendix B where it is shown how to express the
transport map by elementary functions (without disturbing the symplecticity), restricting the

crossing terms to the lowest order and using a special decomposition of Hpeng into two parts.

Appendix B: Bending Magnet with Nonlinear Crossing
Terms Resulting from the Curvature

B.1 The Hamiltonian

By expanding the Hamiltonian (A.14) and keeping the nonlinear crossing terms of lowest
order resulting from the curvature K, , the whole Hamiltonian of a horizontal bending magnet

3 (K, # 0; K, = 0) can be written in the form:

Hpena = Hp + Hi (B.1)
with a lens component
_ _K.(s)-2. ! p g L _Kels) s
o = <K)o)+ g 2 g e ] (B2)

and a drift component Hp given by (3.5) or more precisely by (A.3).

In order to obtain a thin-lens approximation of a horizontal bending magnet due to the
Hamiltonian (B.1) which can be expressed by elementary functions, we decompose the lens
component Hy of eqn. (B.2) into two parts:

Hy = HP +HP (B.3)
with
1 1 2 2 1 Ko(s 2
MY = Ko e fn) 4 g P 7 ety (B
@ _ 1K)
Hi, 2 T f(po)] Pl - (B.4b)

3A vertical bending magnet can be dealt with analogously.
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For each part we then separately construct a thin lens (placing one lens behind the other).

This is achieved replacing Hpeng in (B.1) by

Hyena = ’HD+5(s—[so—0])-As-7:(5—Jl)—|—5(s—[so—l—()])-As-?:(S—JZ)

with
~ (1 1 s o 1 K.(sq
&3 :‘*“%”wf@”+§mﬂ%”'w+§'ﬁiﬂ;n“
(2) L Ko(so) s
M= T ey B

B.2 Thin-Lens Approximation

B.2.1 The Component 'H%)
From eqns. (3.29b) and (B.6a) we have:

. 0 »
Fl(y) = +A's' gH(Ll)(mapmzapz’a'apa)
= 0 ;

. 0 -
FZ(y) = _As'a_mH(I,l)(wapmzaPZaa')Pa)

- As- {_[Km(so)]2 &+ Ki(s0) - f(po) — % . % . 2

L 0
F3(y) = +AS 8}) H(Ll)(ic,pm,z,pz,a',pa-)
Ka(s0)
= As-——————-z-p,;
[1+f(Pd)]
F) = —As- LA
4('!/) - 's'a L (:E,pm,z,pz,d,p,)
= 0;

. o
F5(y) = +AS'$H(I})(5C7P¢7Z7P2707PG)

 As K () w filoy L. Kalso) o fee) p
- As{‘&‘” ) = 5 T 1o Tt oo |
FG(;[/) = —As-%ﬂ%)(m,pm,z,pz,a,pa)

= 0.
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"Dy

(B.5)

(B.6a)

(B.6b)

(B.7a)

(B.7b)

(B.7¢)

(B.7d)

P } ; (B.Te)

(B.76)



Thus :

and

We then get :

a) For z:

Thus:

b) For p,:

D?p,
> DU ﬁm
Thus:

{exp (D]} 5. =

. S 0 0
D = Fy(y) z +Fs(y) 5 + F Y B.8
Z(y) ayz 3(y) 8y3 5(y) ays ( )
0
Fy(9)
Di - -%w (B.9)
Fy(3)
0
Dz =0
— D*2 = 0 for v > 0
. 1
{exp[D]}:c = Z J'D T =2 (B.10)
n=0 *
= Fy(5)

m@@'ﬁ}

+
] Km(SO) a2
[T+ £(de)] y4}’

1 K. (s0)

::AsD{{K@M”%+Kﬁ@¢@d—;u+ﬂﬁﬂﬁﬂ
= 0;

= 0 for v > 1.

o+ D pa

Y2 + As -

—[Ka(50)]® - 91 + Ka(s0) - F(ii6) — = - M 2 }

1

2 L+ f(ge)]
1 K.(s0)
2

pot+ As - {—[Km(sonz o Kelo) S = 3 T G

7)o
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c) For z:

Thus:

d) For p,:

Thus:

e) For o:

Do

D*&

oA e K:L"S A A
Dz = F(y) = As-%'[%%];
N2 A Ka:(SO) A TA A
D3 = As-— =2 _ . D144 = 0;
1+ fpo) D9
— DY3 = 0 for v > 1.

K.(s0)

exp[D]V: = s + As - 91 Ya
{exp D]} Jst As ] (91 9a]
A Km(SO) A
= 24+ As- T F(po)] T p.] - (B.12)
Dﬁz =0 >
= D”ﬁz = 0 for v > 0.
{exp [b]}ﬁz = P, . (B.13)

Fi(3)
~ 1/ ~ ]- Km('so) f/(ﬁa') A A2

As - {_K:L'('SU) -2 f'(Ps) — 9 1+ £(p)] ' 1+ f(5,)] ' [:upz] }
ey 1 Ka(so) f(Ge) 1o .01\ .

e e L Kis)  fe)
5D {-Kuloo) 40100~ - gty i gy ]

44



i e L Ka(s)  f)
= 9ys+ As { K.(s0) - 91" f'(Ye) 2 T+ fe)] L+ f(ie)] [y1y4]}

_ R s e . 1 Km(so) . f’(ﬁe) a2
= g5+ As- 9 { Km( 0) f(yﬁ) 2 1 +f(?:le)] [1+f(ﬁe)] y4}
L Ka(so) () _d}'

= 6+ As-i {—Km(s()) f(Be) = 5 L+ 7] L+ 7] P

f) For p, :

Thus :

(B.14)
Dﬁ, = 0;
= b”ﬁ, = 0 for v > 0.

{exp DI} 5, = Bo - (B.15)

Equations (B.10-15) finally lead to:
zt; (B.16a)

. . . 1 Km(so) .-

p;—l—As-{—Kms 2.2 + Ku(so) - f(pl) — = —=——— - (p! ; B.16b
[ ( 0)] ( 0) ( ) 9 [1+f(P;)] ( ) ( )

. Ka(50) o
2"+ As —————-[z"p;] ; B.16¢
N (5169
P (B.16d)

Ko(s))  f(pl)
1+ f(e)] T+ F(pd)

P (B.16f)

o'+ As-zt- {—Km(so) fl(pd) — % . i . (pz’)z} ;  (B.16e)

B.2.2 The Component 7:[(;)

From eqns. (3.29b) and (B.6b) we have:

ﬂg)(mapm ZyPzs Uapa)

o 0
Fl(y) = +A3'8p
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B K,,(so)-As. .
T M+t P

= A-[y1yd];

S 0 -~
F2(y) = _As'a_wH(LZ)(w7pm7z7pzaa7p0')

_1 K.(s0) - As a
2 0+ ()]

1
= —3A4-u;
. 9 1
F3(y) = +As: (9]) HL ($,Pm,Z,Pz,0',Pa)
- 0;
. 9 )
F4(y) = _AS'EHL (mapmazapna'apo)
- 0;
h = 0
F5(y) = +A3£HL ($7pm7z7pz70'7p0)
_ _l Ka:(so) - As ) f’(pa') o .pg .
2 1+ f(po)] [1+ f(ps)] "
_ 1 f'(ps) 2 |
- 9 [1+f(Pa)] [yl y2] )
— _ (9 A(2)
Fﬁ(y) - _As'a_HL (m,Pm,Z,Pz,O',Pa)
o
=0
whereby we have written for abbreviation :
K.(so) - As
YRS B-17
1+ 7G50 (B.17)
Thus:
- > 0 >0 > 0
D = F@) 5+ Fd) 5+ F(9) - 5
1(3/) 01 2(y) 092 5(3{) s
L. 0 1, 0 1 flp) s ag]az O
- 4. S A A )N P P B.18
{[yl y2] (9']}1 2 Ya 6:02 9 [1 + f(Pa)] [ 1y2] Ya 6:05 ( )
and
Fi(3)
Fy(9)
by = g (B.19)
Fy(g)
0



We then obtain:

a) For z:
Di = F(§) = A-[ihd] ;
D*2 = DFR(®)
= Fi(y Fy(q Fi (g
(R g+ rii) o) R
0 1 0
_ A2. R LA A A
{[yl y2] 63}1 2 y2 8'!;2 } [yl yz]
A 1., .
= A2-{ 1 y§—§y§-y1}
1
_ 2._ A .A2
= A 2{y1 yz}
1.,
= A g
A -0 -0 1
D3z = A {Fi(%)- Fo(q) - {—AA2
& {1(1/) 8@1+ 2(9) 8?32} 5 919
0 1 0 1
_ A3' A A LA {_
{[ylyz] 95, 2% 6372} 5 ¥
3 1 A A A2 1"2 A A
= A 5 [y1y2]y2_§y2'2['y1y2]}
— D% = 0 for v > 2.
Thus:
“ S
{exp[D]}m = Z ﬁ'D z
n=0 *
N 1 -
= i-—l—Di-—l—§D2i-
. . 1 A%
= y1+A-[y1y2]+§-7y1y§
. . 1 .
= y1-{1+A-yz+1A2-y§}
1
- ;;;-{1+A-ﬁm+1,42-ﬁg}.
b) For p,:

(B.20)



DZ Am = DFZ(';)
> 0 2
(e
2 2 89, | 72
AN .
= <_§> '{92'2?!2}
A2 .
- (-3) o
i = (-5) 2 (B g0
x — 9 2y 6A2 Y,
= (_é>3.2. @2.6_ g3
2 > g f
AN3 .
- (-g) 2wt
Thus:
A AN\" o
Dz = <_§> (n!) y2+1,
= n!
o0 A n
_ _ L antl
B nzz:o( 2> y2
1+ 49
D
= B.21
1+ 2 b, (B-21)
c) For z:
Dz = 0,
= Dz = 0 for v >0
Thus:
{exp[D]}2 = 2. (B.22)
d) For p,:
bﬁz = 0,



Thus:
e) For o:
Dé
T
— D'6
Thus:
f) For p, :
Thus:

:>1A7”Az:0for1/>0.

fexe (D)5 — 1. (B.23)
N
F5(y) - A [1‘|‘f(ﬁa)] [ylyz],
D Fy(j)
0 s 0 -
(i) g 1) 5} B
te f'(p+) s 9 1, 0 Y
2A [l_l_f(i)a)] {[yl 2] (9'!:11 2y 6’!}2} [yl y2]
R S N A T,
9 []-‘I‘f(ﬁa-)] {[ 1 2] Ya 2y2 2 [yl y2]}
0;
0 for v > 1.
A o~ 1 .
{exp[D]}a' = 2_: E-D”O‘
= 64+ D¢
I S N
B T G
R 2 S N
= M Hr s P (B.2¢)
Dﬁa = 0;
= IA)“A, = 0 for v > 0.
{exp[DI} s = o - (B.25)
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From eqns. (B.20-25) we finally get:

of = wz-{l+A-P;+1A2'(P;)2}

. 1 2
= :cl-{l—l—iA-p;} ; (B.26a)
fo_ _ Pa B.26b
P 1+ %P; ) ( )
2 = 2 (B.26¢)
pl = pl; (B.26d)

1o

f i f(Pa) i i\ 2

ol = o —-A — 77— -z (p,)°; B.26e
2 iy fe) © ) (B:26¢)
= p, (B.26f)

with A given by (B.17).

Remarks:
1) The thin-lens transport map resulting from eqn. (B.5) reads as:
T, = exp [b(l)] - exp [D(Z)]

whereby D corresponds to the component 7:((1}) and D@ to 7:(332) One could also use the
more symmetric composition :

]_ Ll A ]_ A
Tr; = exp [5 D(l)] - exp [D(2)] - exp [5 D(l)] .

2) As mentioned in the remark at the end of section 3.2.2, one can calculate the transport
map I'; alternatively by solving the differential equation (3.30). To illustrate this method we

use the lens corresponding to 7:[(;) In this case the differential equations (3.30) take the form :

z = é ‘T Py (B.27a)
1 A

. = —— . —— . p? B.27b

p 2 AS pm Y ( 7 )

2= 0; (B.27¢)

p:' = 0; (B.274d)
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1o 1.A.M.m. 2. (B.27e)

' =0, (B.27f)
which are solved by :
o(s) = w(so) (145 o paloo) (s~ 50)] (B.28)
=(0)
Pa(s) = £ ; (B.28a)
1—|—%-A4 - pe(80) - (s — s0)

z(s) = 2(s0) ; (B.28b)

p=(s) = p:(s0); (B.28c)

o(s) = o(s0)— l i f’[Pcr(So)] . w(so) .pj(SO) . (s _ 30) ; (B.28d)

2 As 1+ flp.(s0)]

pa(s) = pa(SO) . (B28e)
Using then the relations:
7' = 4(so) ;
77 = g(so + As),

(see (3.31) and (3.32) ) one indeed regains equs. (B.26a-f).

Appendix C: Superposition of Solenoids and Quadrupoles

C.1 Exponentiation

For a superposition of a solenoid and a quadrupole we have:
H # 0; g #0
and
K, = K, = N=X=p=V =0.

From (3.16) and (3.29b) we then obtain:

- H(So) -As Cy
Fl(y) - +[1 + f(pa')] ) (Cl)
hd _ H(SO) -As . _ s rxl—qg-x - S a
Fz(y) - +[1+f(Pa)] [Pz H( 0) ] g A ) (Cl )
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H(so) - As

Fa(y - o
@ = i e
o H(so)-As _
Fy(9) —m'[Pm+H(so)-z]+g-z-As,
(@) _H(so)-As. f'(po) -{EH(SO)'[EC2+Z2]+[pm'Z—pZ-:Z:]
1+ f(ps)] [T+ f(ps)] L2
Fs(y) = 0
Thus:
o > 0 s 0 s 0 s 0
D = Fi(9) — + Fo(9) - — + F3(9) - — + Fy(9) - — + F,
W0) g, * 1) g, + W) g, T I) g, I
and
& Fi(9) 8
A | e Fy(9) i | Pe
D p — 2 I — A
z Fy(3) o A
D= F4('!:/) Y4
D& = Fi(j);
Dp, = 0 = {exp[b]}ﬁa = Po
with
0 0 +H 0
N —-[H*+3] 0 0 +H
4o = A3U+f@ﬂ] “H 0 0 0
0 —H —[H*-g§] 0
and
g
[1+f(Pa)]

We decompose the matrix Ao into the components AAm and Aozl

Ao = AAm +Aoz

with
0 0 0 0
. H*? 10 0 0
A - Ag. 2
£o1 S+ £(Bo)] 0 0 0 0
0 0 —1 0
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} ;

995

(C.1b)

(C.1c)

(C.1d)

(C.le)

(C.3a)

(C.4)



and

o —(g/H) 0 0 +1
Agp = As T+ ()] 1 0 0 0 (C.7b)
0 -1 +(g/H) 0 0

Since
DAO = AOD — D", = Ayo = {CXP[D]}§0 = {CXP[AO]}§0

the transfer matrix for

T
Jo = 1;” (C.8)
p
reads as:
MO = exp [AO] . (Cg)

Using the equations

we have:
€xp [A] = €xp [AAM] - €xXp [Aoz] .
Also since
[Am]v = 0 for v > 1
we get :
€Xp [12101] = l‘l‘AAm
Because
0 0 1 0\ ™"
—(9/H) 0 0 1 iy
-1 0 0 0 = (=17 1;
0 -1 +(§/H) 0
0 0 1 0\ " 0 0 1 0
_(Q/H) 0 0 1 _ (_1)n _(Q/H) 0 0 1
-1 0 0 0 -1 0 0 0
0 -1 +(g/H) 0 0 -1 +(g/H)
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we obtain :
€xp [Aoz] =

1

0 0 +1 0

- 1 (_1\n. 2n+1 | _(Q/H) 0 0 +1
e aall W R

0 -1 +(3/H) 0

+1 0
=1 cos A@ ( g/H O g _Bl -sin(AG))
AO®)
in(
Q)

—1 +(9/H) 0

0 +sin(AO) 0
A®) cos(AO) 0 + sin(AO)
) 0 cos(AO) 0
—sin(A®) +(g/H) -sin(AB) cos(AO)

COS

—(9/H)-s

— sm(

with
_ H(so)  As
89 = TG

Then from (C.9):

Mo = [l + AAm]

cos(AO) 0 +sin(AO) 0
—(g/H) - sin(A®) cos(AO) 0 +sin(AO)
—sin(AO) 0 cos(AO) 0

0 —sin(A®) +(g/H) - sin(AO) cos(AO)

. (C.10)

For the variable ¢ we obtain from (C.3b) :
D6 = DFy(9)

>0 -0 -0 -0
= {Fl(y).8—191+F2(y).8—3)2+F3(y).6—§3+F4() B }FS()

— _— ~ o — - H T v o H —I_ 9
1+ £(5,)] {ys 5 [H - 41 — §a] - 9% Y - 94 [H - g5+ 9s] - 5

. . 0 . 0
—(g/H) - 7~ +(9/H) - 93 - 7 }
(9y2 53/4

{(—H)-f’( - As [

[1+f( y1+y3)+(@2'ﬁ3—?}4'ﬁ1)]}

2
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H-As  (=H)- f(3.)- As
T+ G [+ 7))

X A{gs - [H - 91— Ga) = [H 91— Ga) - 93 — 91 - [H -3+ 92| + [H - G + 9] - %

—(g/H) 9193+ s - %]}

_ H . As .(_H)'f,(ﬁa)'AS_ ) o
- 2[1+f(ﬁa)] [1+f(ﬁa)]2 (9/H) - 41 9

2 f,(ﬁa)'As N PN
'm'(g/ﬂ)'yl'yz-

Furthermore, using the relations:

D™ [§:19s] = (=1)"-[2- AG*™ - [ 4] ;

— 2.[A6]

2 .o n nt1 Liaa s
D [ygs] = (<1)[2- MG g — g7
AL s S R
- {CXP[D]}[Z’Jl’ys] = > E'D [91 9a]
n=0 """
o0 1 o0
— Dn A D2n+1

G D i+ 2 Gy D el
o0 1

- (D720 MG (g1

+ i:j @y OV AP % (95 — i1

1
= [919s] - cos[2A0] + 2 [§5 — §1] - sin[2 AO]
and
DFy(§) = - D[]
with
o oo L fe) g
2[1+ f(p,))" H
_ _l f'(ps) 9
2 [1+ £f(ps)] H’
we get:
A1 . 1 A,
{exp[D]}a = nZ::OE-Da'
= a'-l-Dé'—l—io: %-Dno



= 6+ F3(y -I-Z— D' Fy(9)

= 0'+F5 + Z Dn_z'DF5(’§)

1 .
_|‘D [91 9]

1 .~ .. AL .
— D" [§1 93] — & - (14 D) [91 93]

n!

= 6+ Fs(§) +r- Y,
n=2
= 0'+F5 Z

\ - " L., .
= U+Fs(y)—"5'[yly3]—"5'[2'A®]'5[93—93]
1
+5 - [§193] - cos[2- AO] + & - B [§5 — 93] - sin[2 - AG]
= &+ Fs(§) — 5 [§1 8] - {1 — cos[2- AO]}

br- 1[ 42 {sin[2- AO] — [2- AO]} . (C.11)

C.2 Thin-Lens Transport Map

Equations (C.9), (C.11) and (C.3c) finally lead to:
4 = Mg ; (C.12a)

g'f = gi_Lp‘i).
iy e 2°

{3 Ao [+ (7] + - ]

—k-[2"- 2] - {1 — cos[2- AB]}

+xK - %[(z’f —(2')%] - {sin[2 - AB] — [2- AB]} ; (C.12b)
pl = », (C.12¢)
with
H(so) - As
)| (C12d)
K = 1 M A (C.12e)

21+ f(p;)] H’
and M, given by (C.10), where the matrix Am appearing in (C.10) takes the form:

0 0 O
-1 0 0
0 0 O
0 0 -1

Ay = A®-H(so)- (C.12f)

oo o o
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(see eqn. (C.Ta)).

Equation (C.12) contains as special cases the transport maps of a simple solenoid and a

simple quadrupole already derived in section 4.
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