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Abstract

We extend two earlier papers [1, 2] on the determination of symplectic six - dimensional
thin - lens maps to show how to construct a six - dimensional symplectic thin—lens transport
map for a bending magnet by using the “unexpanded” square root

1/2
{1 iyl }
[+ f(po))’
of the exact Hamiltonian as was already done in Ref. [2] for quadupoles, skew quadrupoles,

sextupoles, and octupoles. Thus by combining this paper with Ref. [2], one can treat the
whole ring in the thin - lens approximation by using the exact Hamiltonian.
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1 Introduction
In two earlier papers [1, 2] (which we refer to as I and II) we showed how to construct

six - dimensional symplectic thin-lens transport maps for the tracking program SIXTRACK [3].
Whereas in paper I we used an approximate Hamiltonian obtained by a series expansion of the

{1_ P’ + P’ }1/2
[1+f(Pa)]2

up to first order in terms of the quantity

square root

P: + p?
[1 + f(Po)]2 ’

in IT an improved Hamiltonian was introduced by using the unexpanded square root for various
kinds of magnets (quadrupoles, skew quadrupoles, sextupoles, and octupoles) appearing in
a straight section of a storage ring. The outcome was that the thin-lens maps remained
unchanged and the corrections due to the new Hamiltonian were fully absorbed into the drift
spaces. In II we also presented a symplectic treatment of the nonlinear crossing terms of the
Hamiltonian resulting from the curvature in bending magnets, but only took their lowest order
into account.

In this report we now demonstrate how to treat the bending magnets within a symplectic
thin - lens approximation, taking into account the exact Hamiltonian also.

We achieve this by introducing a generating function in analogy to the method applied by
E. Forest and K. Ohmi for the symplectic integration of complex wigglers [4]. The analysis
used in this report can easily be modified for application to a thin-lens synchrotron magnet.

Combining this paper with paper II, we are thus in a position to treat the whole ring without
further approximation.

The equations derived are valid for arbitrary particle velocity, i.e. below and above transition
energy, and shall be incorporated into the tracking code SIXTRACK [3].

The paper is organized as follows :

In section 2 the general canonical equations of motion for a bending magnet in terms of
the exact Hamiltonian are specified. In section 3 we solve the equations of motion by splitting
the Hamiltonian as in paper II into two parts. The “unsplit” Hamiltonian is treated in section
4, solving the equations of motion in one step. As a byproduct, it is shown in Appendix A
how to construct symplectic thin lens maps for quadrupoles, skew quadrupoles, sextupoles,
and octupoles, using the new method described above. Finally, a summary of the results is
presented in section 5.

2 The Canonical Equations of Motion

2.1 Notation

The formalism and notation in this paper is similar to that of Ref. [1]. Thus we will begin
by simply stating the canonical equations of motion for a bending magnet already used in this
earlier paper and refer the reader to the latter for details.



2.2 The Hamiltonian
For a bending magnet with
K’+K? # 0; K. K, =0

the exact Hamiltonian reads as:

2 2 1/2
_ I P LY
Pt = 2=l Sl 4 Kot ) {1

1 , 1
+§'[1+Km'$+Kz'Z] )

2 2 1/2
_ Ly PP
= gl S {1 - BEEY

~ [+ f(po)] - [Ke -2+ K. - 2 {1 PR }1/2

[1+ f(po)]”
+[K: -z + K. - Z]+ Kz w +; =
1/2
o o mtl
= p, — [1+ f(ps)] {1 14+ f(ps)? }
y 9 1/2
—_ . - sz _M -
1+ f(po)) - (Ko o2+ K. - 2] ({1 [1+f<p«>12} 1)

1 1
_f(Po)[Km$+KzZ]+§K;m2+§Kz2z2

= Hr+ Hir (2.1)
with
]' 2 2 1 2 2
HI = _f(pa)[Kmm+KzZ]+§me+§KzZ ) (223')
HII = Hcross + Hd'rift (22b)
where

2 2 1/2
Heross = —[1+f<p,>]-[Km-m+Kz-z]-({1—%} —1) P (23a)

2 2 1/2
Hdrift = Po— [1 + f(Pa)] ) {1 - %} ) (2-3b)

and where f(p,) is given by:

f(ps) = %J(l + B2 p,) — (m];:2> ~1 (2.4)

(K., and K, are defined in Ref. [1]).



3 Thin-Lens Approximation for a Bending Magnet

In order to represent a bending magnet we divide each lens into a sufficient number of thin
slices of length As. Furthermore, we modify the Hamiltonian (2.1) by writing

A

Hr = Hi(Y; s0) - As-6(s — s0)

= As-8§(s—sg) x
[ 1(00)  (Kalso) -+ Ku(so) - 2]+ 5 [Kulso)] -2+ 5 [Kulsa)]? 22} (31)
and
Hoena = Hi+Hir, (3.2)
whereby Hi represents a symplectic kick effective in the region
so < s < so+e€ (regionI)
and Hjr contains nonlinear crossing terms and the drift terms and is effective in the region
so+e < s < sg+ As (region IT) .

On approximating Hoend by "expanding the square root” one obtains the Hamiltonian of

Ref. [2].

In section 4 it is shown how to treat the unsplit Hamiltonian Hpeng-

3.1 The Term 7:[1

3.1.1 Canonical Equations of Motion

The canonical equations of motion due to the Hamiltonian H; read as:

i N OH;
ds © O0pe

= 0; (3.3a)
d Pe Oz

= — [Km(so)]z -As-6(s—s0)-z+ Ku(s0) As-8(s—30) f(ps) ; (3.3b)

= 0; (3.3¢)



3.1.2 Solution of

L
bz

- [Kz(so)]z -As-6(s—s0)-z+ K,(s0)  As-8(s—s0)- f(ps) ;

OH;
Ops

—[Ku(s0) ¢+ K.(s0) - z] - As - 8(s — s0) - f'(po)

+

A

OH;

0o

the Equations of Motion

Equations (3.3a-f) can be solved by integrating both sides from

with

leading to ' :

2(s0 + )
P=(30 +€)
z(s0 + €)
P:(s0 +¢€)
o(s0+ €)

Pa(so + 6)

8o to sg+ ¢

0<e — 0

= 2(s0) ;
= pa(50) — [Ku(0)]” - As - 2(s0) + Ku(s0) - As - f[(po(s0)] ;
= 2(s0) ;
= px(s0) — [Kx(s0)]" - As - 2(s0) + K(s0) - As - fl(ps(s0)] 5
= o(s0) — [Ka(s0) - 2(s0) + K.(s0) - 2(s0)] - As - f[(ps(50)] ;

= po(s0) -

These relations which are symplectic were already derived in Refs. [1, 2].

(3.3d)

(3.3¢)

(3.3f)

(3.4a)
(3.4b)
(3.4¢)
(3.4d)
(3.4e)

(3.4f)

!Note that the factors in (3.1b,d, e) which multiply the é—function are continuous functions of s at so.
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3.2 The Term H;;

For a horizontal bending magnet % :
K, # 0; K, =0

we get from (2.2b) and (2.3a,b) the Hamiltonian :

Gl_[?ﬁinyﬂ_q

K,
1/2
pm+pz
—[1+ f(ps)] { e } + Py

Hir = —[1+ f(p-)]-

y 9 1/2
_ —u+ﬂmnwKrw+1“{“‘H%%fﬁ%

+[1+f(po)]'Km'm+Pa . (35)

The canonical equations corresponding to the Hamiltonian (3.5) take the form:

d . OHrr
T = _S. 5 (3.6)
with
ST
(y17 Y2, Y3, Ya, Ys, yG)
= (Jl,pm,Z,pz,O',po)
and
S, 0 0 0 1
ﬁ: 0 §2 0 ) §2:(—|—1 0) ’ (3'7)
0o 0 S,
or, written in components :
d B OHrr
%m = Ops
1 pi+p }_1/2 (—2p2)
= —[1+ o) Ky -z+1]- =<1 — 2 =2 PR S Y A
1+ £(p)] | B e B T
2 2 -1/2
pm +pz pm
= +[Keoz+1]- 41— ———— el 3.8
R o B (382)
d __OHn
dst N Oz
2 2 1/2
Pz + P
= +[1+ f(ps) - Kz - {1—¥} —1 ; 3.8b

2A magnet bending in the z- direction can be treated in a similar way.
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d n 87—(11

ds° 0p.
2 2 -1/2
Pyt P o
= +[K,oe+1]-{1- Pt : 3.8
[He o ]{ u+ﬂmﬂ4 T 7)) (3:8¢)
i _ _87'(11
dspz o 0z
= 0; (3.8d)
d O0My
ds’ +8pa
2 2 1/2
/ Pz + P /
= —fp,) K, z+1 -{1—7} +14 f(p,) K, -
F(ps) - [ z+1] T+ 7o)l f'(ps) T

1 el \77 24l
—[1+f(Pa)]'[Km'-’C+1]'§{1—W} 'm'f(%)

= 1+f,(Po)'Km'm

/ . . . B p2 + p? P+ pl
_.f(Po) [K-‘ﬂ +1] 1 -|-fp,7 } { [1+fpcr)] }

P2 +Pz } [P+l

—f'(ps)  [Ke -2+ 1] 0t Fp )P

b
(-
- = f) (K ae] f o } ST () K

::—fQJWKfm+H-{1—T%%%ﬁ} )+u— @) 5 (38¢)

d __OHu
ds 7 = do
= 0. (3.8f)
Expanding the solution of the equations of motion (3.8) up to first order in As we can
write :
z = =+ As- OHu
Ope
P 7 P
= .73+A3-Km-m+l-{l—#} —_— 3.9a
| R R e on 1 B T R



OHir
Oz

Dz = pm_As'

= petAs[1+ f(p)] Ka

OHir

5 _ As .
Z z + As apz

= z—{—As-[K,,-;c—{—l]-{l—

_ OHir
P: = p:—As: 0z
= Pz;
c = o+ As- OHur
O0ps

= o+ As-[1-f(p)]

(=) )

p; + i }_1/2' p:
[1+f(Po)]2 [1+f(P0)] ’

1+ f(ps

2 2 -1/2
_As'fl(pa')'[Km'm—l_l]({l LPZ)]Z} _1) :

(

So+€);
Y y(so + As) ;

(y = (w7pm7 2y Pz, 0, Pa)

0<e — 0.

OHirr
Do = o — As -
D Y4 S 90
= pa.
with
Yy =y
and
The map

(ma Pzy 2 Pz, O, pa) -

(Z, oy Z, Dz, T, Do)

(3.9b)

(3.9¢)

(3.9d)

(3.9¢)

(3.91)

(3.10)

defined by (3.9) is not symplectic. In order to symplectify eqn. (3.9), higher order terms in
As have to be added on the r.h.s of (3.9). This can be achieved by defining the generating

function:

F(mapa:; Z, ﬁz; ag, ﬁa) = m'z_’m+z'1_7z+0"ﬁa+A3'H11(m,ﬁm; Z, ﬁz; ag, 1_70)
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so that (3.10) becomes a canonical transformation ° .

Then :

F = T Pet+z:p,+ 0Dy

9, _9 1/2
—As-[1+ f(5,)] Ko - ({1 _ 7{1:’f;§z>]2} - 1)

o . 5 N1/2
—As. 5.)] - _M} As-p,
147G {1 - B EEE s aa

= 2Ptz Pt o PotAs-[1+FB) Ko -+ As-p,

_2 _2 1/2
Py + D,
7]2} , (3.11)

_As-[1+f(ﬁa)]-[Km'w+1]'{1_ 1+ f(2s

This method has been applied by E. Forest and K. Ohmi to obtain symplectic transfer maps
for wigglers [4].

With the generating function (3.11) the transfer map (3.10) reads as:

~ oF
1 Rt |77 (—25)
_ a:—As-[l—{—fp,]-[Km-;c—l—l]-—{1—“’7_2 L\ TEPe)
(72) o RO B ()
—9 —9 -1/2 _
Pz +P Pz
= z+As- [K, - z+1 _{1_m7_z} e 3.12a
| SR8 B (8 (3122
_OF
Po ™ e
—9 —9 1/2
_ _ Pz + P
— = As [+ f(5,)] - K - {1 _ 7} ~1) (3.12b)
1+ £(7.))
3The transformation equations due to the generating function F are:
oF M1
Uy = — = As - ;
y o5, yt+As o5,
oF IH
Py —= % = Py t+As- a;I j
y = z, 2 0.

This transformation is canonical and approximates the real symplectic motion due to eqn. (3.8) up to first order
in As [4].

10



Dz

Po

oF

Using the relations

0p.

9 | - —1/2 _

P, + P, P , .
z—{—As-[Km.zc—}—l]-{l— [1+f(}70)]2} T Gl ; (3.12¢)
oF
0z
Pz ; (3.12d)
oF
35,

O'—I—As-f'(}_),)-Km-zc—l—As
—As- f(5,)- [ K .m_l_l].{l_M}l/z
Fol i Be [T+ f(po))?
As. IS 1 U 5 - Bl ) [
L B e L
o+ As+As- f'(p,) K, -z
o | - -1/2 —2 | =2
WIERY 2 ). Pt p: ). Pt p:
Ao Ee) [ Kozt 1] {1 [1+f(ﬁa)]2} {1 [1+f<@>]2}
_y | =2 -1/2 _p | =2
“As- f(5.) - 2 )y Pt P . Py 1D
Ao fpe) [ Koot 1] {1 [1+f(z7«)]2} Tt /(5P
o+ As-[1— f(p,)]
—As- f'(py) [Ky-z+1]- {I—M}_lﬂ—l ; (3.12€)
A 1+ )P | |
OF
do
Do - (3.12f)
P: = Pz (3.13&)
P = DPo (313b)

11



resulting from (3.12d,f), eqn. (3.12b) takes the form:

5 N1/2
Dz = ﬁm_As[l_l_f(pd)]Km({l_%} _1)

or

{Bo = po + As-[1+ f(p,)] - Ko}’

— S - : . B pg B I_)i
= {As-[1+ f(p,)] - K.} {1 1+ f(po) [1+f(pa)]2}

representing a quadratic equation in p, the solution of which reads as:

1 %
1+ [K, - As]

Pz =

{pm—As-[1+f(pa)].KmiAs.[1+f(pa)].Km.¢[1_ Pz +p: ]+ c }

[+ fpo)* ] 1+ F(po))
(3.14)
with
C = —[K, As]?-p>+2[Ky As]-[1+ f(ps)] - po - (3.15)

Comparing eqn. (3.14) with (3.9b), it can be seen that we have to take the positive sign of
the square root in (3.14), so that we may write:

1
7 X
1+[K, - As]

p2 + p? ¢ —
{Pm +As - [14 f(ps)] - Ko - (J [1 1+ f(pa)]zl RENTS; 1) } |

(3.16)

Pz —

The quantities Z, z, and & are then to be obtained from eqns. (3.12a,c,e) by taking into
account eqns. (3.13) and (3.16).

3.3 The Whole Region sy < s < s9+ As

For the transfer map 7' of the whole region so < s < 5o+ As we now have:
T = TII o] TI , (3]_7)
where T; corresponds to region I and 777 to region II.

12



If we denote (as in Refs. [2, 1]) the initial vector by 3* and the final vector by %7, the map
Ty is described by :

o = (3.18a)
pl = pi—[Ke(so)]’ - As- ' + Koso) - As- f(p]) ; (3.18b)
A (3.18¢)
pl = p;—[K.(s0)]’ - As- 2 + K.(s0) - As - f(p;) ; (3.18d)
of = ot —[Kau(so) 2 + K.(s0) - 2] - As - F/(pl) ; (3.18e)
pl = », (3.18f)

(see eqn. (3.4)) and the map Ty; by:

P 1
P: = 117K, As?
K ALl o (1 )R+ () R L U
{”””K” asl- [t ftee) (J - e 1)}’(3'19)
pl = p; (3.19b)
pl = ps; (3.19¢)
i Kai] DT
= s [t ] s AL | T (3:194)
0 = 2 s - .zt . _(p”’) +(p!)? _1/2. P! e
LRt 11 7P | T G0 (3:19¢)
of = o'+ As-[1-f(p!)]
, ; (pd)2+(p1)\ 7"
—As-f(pl)- [K. +1].({1— ST } —1) (3.19f)
with
C = —[K.-AsP-(pi)?+2[K. As]-[1+ f(pl)] - pi (3.20)

(see (3.13), (3.15), and (3.16) combined with (3.12a,c,e€)).

13



Remarks:

1) One could also use the more symmetric decomposition

T = Tu(As/2)oTroTu(As/2) . (3.21)

2) The transfer map 7' is symplectic for an arbitrary As, since T and T, are symplectic
by construction. In the limit

As — 0
one obtains the exact solution of the canonical equations of motion corresponding to the start-

ing Hamiltonian (2.1).

3) The calculation of the transport map for a bending magnet can easily be extended to
synchrotron magnets. In this case, the terms

1 2 .2 1 2 2
i[Km(so)] -z° and i[Kz(s())] -z

appearing in the Hamiltonian H; and Hr (see eqns. (2.2a) and (3.1) ), have to be replaced by
1 1
§[K£+9] -z’ and §[Kzz—9]'z2

(g is defined in Refs. [1, 2]), while H;; (see eqn. (2.2b)) and T7; in eqn. (3.19) remain
unchanged.

The canonical equations of motion corresponding to the modified Hamiltonian Hr may be
integrated in the same way as in section 3.1.1 (see also Refs. [1, 2]).

4 A Symplectic Treatment of Bending Magnets without
Splitting the Hamiltonian

In this section we treat the “unsplit” Hamiltonian Hpena, using a generating function in
analogy to eqn. (3.11) for the whole region sy < s < so + As.

4.1 The Hamiltonian

From eqn. (2.1) we obtain for a horizontal (K, = 0) bending magnet :

2 2 \1/2
Hbend = Do — [1+f(p0‘)] ' {1 - LPZP}

[1 + f(Pd
) 9 1/2
) P D P - - G
1+ f(po)] - K ({1 1+ f(pa)]z} 1)
—f(po) Kz -z + %Kf -z’ (4.22)

14



4.2 The Generating Function

In analogy to eqn. (3.11) we define:

F(wa Dz; 2, Pz; O, 130)
= w'ﬁm+z'ﬁz+a'ﬁa‘I‘As'Hbend(w,ﬁm; Z, Da; U,ﬁa’)

= $'17m+z'1_7z+0"1_70

2, -2 1/2

9 9 N1/2
—As. 5.)] - _M} As - p,
i) {1- B

1
—}—As-{—f(ﬁa)-Km-w—}—in-mz}

= ¢ Ppt+z-P,+0 P+ As-[14+ f(p,)] Ko -z
—As-[1+ f(5)] [ K .m+1].{1_M}1/2+As_-
Do F [1‘|’f(ﬁo-]2 Peo

—I—As-{—f(f)a)-Km-;c—l—%sz-:cz} .

4.3 The Transfer Map
With the generating function (4.21) the transfer map

(CC, Pz, 25 Pz, O, Pa-) - (57 pma Zy Pz, O, pff)

reads as:
_ oF
© T o
_ 1 2+ 77 (25
— r—_As- I [K, - L _ Fe Tl S St .2
1+ £, 1K +1]2{1 U+ﬂmP} B
—9 —2 -1/2 _
a4 As (K. -ztl]. _M} P
* Koot 1] {1 [1+ f(ps))? 1+ f(p.)]
_oF
Pz = (9—313

15
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(4.24a)



Dz

Po

2 | -2 1/2
ﬁm—As-[lJrf(ﬁa)]-Km-({MLPZ)]Z} —1)

Using the relations

1+ f(p-
+As-{—f(B,) Ko+ K-z} ; (4.24b)
oF
az_)z

o ~1/2 _

P, +P; P , .
z—i—As-[Km-w—}—l]-{l—W} [1+f(1_70)]’ (4.24c)
OF
9z
P ; (4.24d)
OF
0ps
o+ As
—As-f’(‘)-[K -:13+1]-{1—M}1/2

Po) 1 Be [+ f(ps)I?
I L B e L
o+ As
_2 _2 -1/2 —2 —2
“As- f(5.) . z )y P2t )y P2t
Ao fpe) [ Koz +1] {1 [1+f(ﬁa)]2} {1 [1+f<@>]2}
_9 —2 -1/2 2 2
A (5 TK. . Pt [z + P2l
Ao flpe) [ Ko a 1) {1 [1+f(ﬁa)]2} T+ Fp)?
2, 9 -1/2
5. .z . _7171.4-172 : e
o+ As—As - f'(ps) [Ke-z+1] {1 []-+f(1_70')]2} ; (4.24e)
OF
Ho
o - (4.24f)
pz = Pz ; (425&)
Ps = Po (4.25b)

16



resulting from (4.22d,f), eqn. (4.22b) takes the form:

= 7. — S - . . _M 1/2_
P = Po—As-[1+f(p,)]- Ko ({1 [1+f(Po)]2} 1)

+As-{—f(ps) - Ko+ K2z}

{ﬁm_ﬁm+A3'[1‘|‘f(pa)]'Km}2
— (As 14 . _sz_ 1_ P’ - A 2}
(et o) b {1 = e - e
with
P = pm—As-{—f(p,)-Km—l—Kj-m} . (4.26)
This represents a quadratic equation in p, the solution of which reads as:
_ 1 o
Pe = 1Y[K. - As]
5. — As-[1 2K, + As - [1 VK, || _PatPE ] ¢ }
{p 1+ £(p0) 1+ £(p0)] J ] B
(4.27)
with
C = —[K, - As]?-p2+2.-[K, As]-[1 + f(ps)] - P - (4.28)

As in section 3, it can be seen by comparing eqn. (4.25) with the linear approximation of
the equations of motion, that we have to take the positive sign of the square root in (4.25), so
that we may write :

1
o .
Pe = 11K, As

. P2 + p? C
{p” Fhs Il e (J ll T f(pa)f] TP 1) } 29

or, after some analysis:

1 -
1+ [K,- As]

Pz =

{pm—[m-m]-[1+Km-w]+[Km-AsJ-[1+f<pa>]-Jl—m} (4.30)

17



with

C = —[Ky As]® p2+2 - [Ky As] [l + K, 2] ps

(Ko AsT - [~f(po) + Ko 2] {24 f(p) + Ku 2} . (4.31)

The quantities Z, z, and & are then to be obtained from eqns. (4.22a,c,e) by taking into
account eqns. (4.23) and (4.27).

Denoting again the initial vector by #* and the final vector by 77, we thus have for the
whole region sg < s < 59+ As:
1

-
P: = 17K, AsP

K, Ad | [ K, AT R ES 2R | B
i ([t ] ) o O

pl = p; (4.32b)

pl = p;; (4.32¢)
o — i As Tk a1l 1 (p£)2+(p!)2}_1/2_ I

= o'+ As- [K, ' +1] {1 T IO Trron (4.32d)

I S 5. e _ _(me)2+(Pz‘f)2 _1/2_ P! . .

s [Kerat 1] {1 (5 T b Fih) (4:32¢)

=gy Ae s ) (Kot 1] 1o @
= o'+ As— As- f(pl) Koo' +1] {1 [1+f(p£)]2} (4.321)
with
¢ = —[Ke As] - (pi)*+2 (K. As]- [1+ K. 2] -pl
— [Ko - AsT - [=f(pl) + Ko - @] - {24 f(p}) + Ko -2* } . (4.33)

Note that the transfer map described by (4.30) is symplectic for an arbitrary As by con-
struction and approximates the solution of the equations of motion in linear order of As. In
the limit

As — 0
one obtains the exact solution of the canonical equations of motion corresponding to the start-

ing Hamiltonian (2.1).
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Remark:

Equations (4.32b,c,d,e) have the same form as the relations (3.18 b, ¢, d, e) corresponding
to the Hamiltonian Hyz. In (4.30 a,f) additional terms appear resulting from the Hamiltonian
Hr.

For example, eqn. (3.14) or (3.17a) is obtained from (4.27) (which is equivalent with
(4.30a) ), if one replaces p, in (4.26) and (4.27) by p,.

5 Summary

By extending Refs. [1, 2], we have shown how to solve the nonlinear canonical equations
of motion for a thin-lens bending magnet and also for a thin-lens synchrotron magnet in the
framework of the fully six-dimensional formalism, taking into account the exact Hamiltonian.

We achieve this with a technique different from Refs. [1, 2] by using a generating function
in a way analogous to that suggested by E. Forest and K. Ohmi in Ref. [4].

Since the equations of motion (resulting from a Hamiltonian) are canonical, the transport
maps obtained are automatically symplectic.

The equations derived are valid for arbitrary particle velocity, i.e. below and above transition
energy, and shall be incorporated into the computer program SIXTRACK.

Following this thin-lens treatment for the conventional magnet types, a future task could
be to try the construction of the symplectic thin-lens transfer map for the solenoid using the
exact Hamiltonian (without expanding the square root).
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Appendix A: A Symplectic Treatment of Quadrupoles,
Skew Quadrupoles, Sextupoles, and Octupoles Taking into
Account the Exact Hamiltonian

A.1 The Hamiltonian

For a straight section containing quadrupoles, skew quadrupoles, sextupoles, and octupoles
the Hamiltonian reads as [1, 2|:

2 2 1/2

1 1
+§g-m2—§g-z2—N-a:z
A 3 2 Y 4 2 2 4
—I—g(a: —3:I:z)—|—ﬂ-(z —6z°2° +2°) (A.1)
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(9, N, A, and p are defined in Ref. [1]).

In detail, one has:

A.2 Generating Function

Analogously to eqn. (3.9) we define:

a) g#£0; N=XA=p=0:
b) N#£0; g=A=p=0:
c) V£0; g=N=p=0:
d) p#0; g=N=X=0:

F(wa Dz; 2, Pz; O, I_’a)

quadrupole;

skew quadrupole;

sextupole;
octupole.

= CC'I_’m‘I'Z'ﬁz‘I'U'ﬁa‘I'AS'H(Ccaﬁm;Z)ﬁz; 0'7170)

= T Ppt+z2p,+0"Ps

-804 £G7n))- {1 -

1, 1

P2+ P
1+ (-

+As-{—g-w ——g-z22—N-zz

2

2

1/2
]2} s

+%-(m3—3w22)—|—2#—4-(24—6:0222—{—:04)} ;

A.3 Transfer Map
With the generating function (A.2) the transfer map

reads as:

(J}, Pz, 2, Pz, 0, pa)

oF

0P

z — As

z+ As -

T+
{1 _ _BtE
T+ 1,

— (ia I_)ma 2y Pzy O, pd)

-
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2+ 7 }‘”2,
1+ f(7s)? [1

y2

TEA

(A.3a)



OF

Pz = (9_30
= ﬁm+As-{+g-w—N-z+%-(wz—z2)+%-(w3—3wz2)}; (A.3b)
__ OF
© T o
9 | =2 -1/2 _
= z As - _M} piz 3¢
! {1 T+ fGES T+ fG (4:3¢)
_OF
pz - g
= ﬁz+As-{—g-z—N-m—)\-mz—l—%-(z3—3m2z)}; (A.3d)
_ OF
7~ b
= o+ As
—As- f'(p ){1 _ M}lﬂ
i L+ f(po)]?
1 2t 7 2R+ L,
—As- N d1— P2 B 2P TP A
O A ey B == e
= o+ As
9 | =2 -1/2 9 | =2
BN PR R } { B P }
fie) {1 T+ (7P ERTENI S
2 | =2 -1/2 2 2
As. ) A1 PR } [P +pl
fize) {1 T+ 77 )P L+ f(p)*
9 . 9 -1/2
s As_As. f(5.).d1_ P TP _ e
= o+ As—As- f(p,) {1 [1+f(z‘aa)]2} ; (A.3e)
_OF
Pr = 55
= Do - (A3f)

From (A.3b,d,e) we obtain:

A
}3:9 = Pm—AS{+gCC—NZ+§(m2—Z2)+

SRS

-(:c3—3:cz2)} . (Ada)
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The quantities Z, z, and & are then to be obtained from eqns. (A.3a,c,e) by taking equs.
(A.4) into account.

Using the notation

'.’ji - '!7(30), ( )
gt = §(so+ As), (A.6)

we may finally write:

o = pim e {hg st SN D - 4 5 1 3@ L) A
pf = pzi—As-{—g-zi—N-wi—/\-(wi)(zi)—}—%-[(zi)s—fi(wi)z(zi)]} : (A.7b)
pl = pi; (A.7¢)
o o (1SR ey 7o
TR (B L e 1 (819
of = o'+ As— As.f'(pg).{1_ (’Eff;(;;i)z}_m . (A7)

The relations (A.7a-f) describe the thin-lens map of a lens consisting of a superposition
of quadrupoles, skew quadrupoles, sextupoles, and octupoles. In particular, we get the map of

a pure quadrupole, skew quadrupole, sextupole, and octupole.
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