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plectic dispersion formalism.
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1 Introduction
The beam-beam interaction is studied in storage rings, using the formalism devel-

oped by Hirata, Moshammer and Ruggiero (synchro-beam mapping and a Lorentz boost
transforming the collision with a crossing angle to a head-on collision). In this approach
the strong bunch is split longitudinally into several slices, where each slice is described by
an electrostatic potential of the form

U(x, y; Σ11,Σ33) = − rp

γ0

∫ ∞

0

exp

(

− x2

2Σ11 + u
− y2

2Σ33 + u

)

√
2Σ11 + u

√
2Σ33 + u

du. (1.1)

Here rp is the classical particle radius, γ0 is the Lorentz factor of the test particle and Σ
is the 6 × 6 phase-space envelope matrix of the strong bunch defined by

Σij ≡< XiXj > − < Xi >< Xj > , i, j =1, . . ., 6 (1.2)

where the lowercase x, y and the uppercase X, Y stand for the transverse coordinates
of the test particle and the strong bunch with ~X = (X,PX ;Y, PY ;Z, PZ)T , respectively.
In addition, a new technique of symplectic mapping in the six-dimensional phase space,
called synchro-beam mapping (SBM), has been introduced by these authors in Ref. [1].
It allows to include the bunch length effect at the collision point and the energy variation
caused by the electric field of the opposite bunch. This mapping is formulated only for
head-on collision, but Hirata has shown that a crossing angle can be eliminated by a
Lorentz-boost [2].

Eq. (1.1) is valid for the case of uncoupled motion. The aim of this report is to
extend the formalism so as to include six-dimensional linear coupling.

This paper is organised as follows: In section 2 the beam-beam kick is studied in the
most general form. The tilted cross section induced by coupling, which is needed in section
2 is calculated in appendix A. In Appendix B we describe methods to construct SBM-
solutions for a solenoid field which allow us to investigate the beam-beam kick within a
solenoid. The SBM-solution is obtained by the use of a generating function, of Lie-series
or by an integration method. A linear model of the beam-beam kick including coupling is
studied in Appendices C and D, concerning the derivation of the linear beam-beam ma-
trix, the tune-shift caused by a beam-beam kick and a linear six-dimensional dispersion
formalism including the beam-beam interaction. Lastly, a summary of the results is pre-
sented in section 3. The 6D beam-beam formalism has been incorporated in the tracking
programs MAD [3] and SixTrack [4].

2 Beam-beam kick for coupled motion
2.1 The electromagnetic field due to a tilted bunch

The generalisation of the analysis in Refs. [1, 2] by including coupling and a tilted
strong bunch (caused by coupling) can be achieved in a straightforward manner by describ-
ing the particle motion in the framework of the fully coupled six-dimensional formalism
and by replacing the electric potential U of Eq. (1.1) for an untilted bunch by a new
potential

Û(x, y; Σ̂11, Σ̂33; θ) ≡ U(x̂, ŷ; Σ̂11, Σ̂33) = − rp

γ0

∫ ∞

0

exp

(

− x̂2

2Σ̂11 + u
− ŷ2

2Σ̂33 + u

)

√

2Σ̂11 + u
√

2Σ̂33 + u
du,

(2.3)
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where the symbol ‘̂ ’ denotes quantities in the coupled frame of reference. The coupling
has to be considered for the test particle as well as for the strong bunch.

2.1.1 Test particle

The potential (2.3) is obtained from (1.1) by introducing a rotated coordinate sys-
tem of the test particle (for details see Appendix A):

x̂ = x cos θ + y sin θ;
ŷ = −x sin θ + y cos θ

(2.4)

where θ denotes the coupling angle of the strong bunch given by 1):

sin 2θ = −sgn(Σ11 − Σ33) ·
2Σ13

√

[Σ11 − Σ33]2 + 4Σ2
13

;

cos 2θ = sgn(Σ11 − Σ33) ·
(Σ11 − Σ33)

√

[Σ11 − Σ33]2 + 4Σ2
13

;

=⇒ tan 2θ = − 2Σ13

Σ11 − Σ33

(2.5)

or

sin θ = −sgn{(Σ11 − Σ33)Σ13}
√

1

2
(1 − cos 2θ)

cos θ =

√

1

2
(1 + cos 2θ).

(2.6)

2.1.2 Strong bunch

For the strong beam we have the same transformation (2.4) for X and Y among the

coordinates ~X ≡ (X,PX ;Y, PY ;Z, PZ)T . The linear particle motion can be represented as
a superposition of eigenmodes as shown in [5]. Denoting by Jk and φk (k = I, II, III) the
action-angle variables

~X(s) =
∑

k=I,II,III

√

Jk[~vk(s)e
−iφk + ~v∗k e

iφk ] (2.7)

where ~vk(s) (k = I, II, III) describe the eigenmotion with the linear 6D transfer matrix
from longitudinal position s0 to s:

~vk(s) = M(s, s0)~vk(s0) (2.8)

with
M(s0 + L, s0)~vk(s0) = e−i2πQk~vk(s0) (2.9)

1) We have chosen θ = −θp defined in Appendix A, since the strong bunch rotates in the opposite
direction of the test particle. In a double-ring machine such as the LHC this is not necessarily true.
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(L is the circumference of the accelerator and Qk the tune for the kth mode). The rotated
Σ̂ can be expressed by the elements of the unrotated Σ-matrix:

Σ̂11 ≡< X̂2 > =
1

2

{

[Σ11 + Σ33] + sgn(Σ11 − Σ33)
√

[Σ11 − Σ33]2 + 4Σ2
13

}

Σ̂33 ≡< Ŷ 2 > =
1

2

{

[Σ11 + Σ33] − sgn(Σ11 − Σ33)
√

[Σ11 − Σ33]2 + 4Σ2
13

}

.

(2.10)

These elements are a function of the eigenvectors:

Σ11 ≡< X2 > =
∑

k=I,II,III

2Jkvk1v
∗
k1;

Σ33 ≡< Y 2 > =
∑

k=I,II,III

2Jkvk3v
∗
k3;

Σ13 ≡< XY > =
∑

k=I,II,III

Jk[vk1v
∗
k3 + v∗k1vk3].

(2.11)

Note that

E1 =

√

Σ̂11, E2 =

√

Σ̂33 (2.12)

are the principal axes of the elliptical cross section

X̂2

E1
+
Ŷ 2

E2
= 1 (2.13)

in the (X̂ − Ŷ )-plane.
Conversely to Ref. [2], the crossing angle 2φ can be chosen in an arbitrary crossing

plane (x̃ − s), defined by an angle α (see Fig. 1). We can write the components of the
strong bunch in a Cartesian coordinate system (X, Y , Z; Px, Py, Pz) defined for the
laboratory frame and oriented according to the ideal orbit of the test particle as:

Px = P sin 2φ cosα;

Py = P sin 2φ sinα;

Pz = −P cos 2φ,

(2.14)

with P the momentum of the bunch.

2.2 Lorentz boost
The Lorentz boost as described by Hirata consists of a transformation of Carte-

sian to accelerator coordinates and a Lorentz boost which makes the collision between
the bunches head-on. This is necessary because the 6D beam-beam interaction is only
described for a head-on collision. In addition, we include the crossing plane angle α in our
formalism.
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x

y

x~
α s

 2φ

x~a.) b.)

Figure 1: Part a.) defines the crossing plane angle α in the (x − y)-plane and part b.)
depicts the total crossing angle 2φ in the (x̃− s)-plane.

2.2.1 Transformation from Cartesian to accelerator coordinates

The following relations of Ref. [2] remain valid:







ct
xC

zC

yC







= A







z(s)
x(s)
s

y(s)






, (2.15)

where

A = A−1 =







−1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1







(2.16)

and 





E/c− p0

pxC

pzC − p0

pyC







= p0B







pz

px

h
py






, (2.17)

with

B = B−1 =







1 0 0 0
0 1 0 0
1 0 −1 0
0 0 0 1







(2.18)

and p0 being the momentum of the test particle. They describe the connection between
the Cartesian coordinate (xC , pxC ; yC, pyC ; zC , pzC ; E, t) with E = cp and the accelerator
coordinate ~x =(x, px; y, py; z, pz; h, s) of the test particle with the Hamiltonian

h(px, py, pz) = pz + 1 −
√

(pz + 1)2 − p2
x − p2

y. (2.19)
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In this case we applied the ultrarelativistic approximation v0 ≈ c.
The Lorentz transformation

L0 =







1/ cosφ − sin φ − tanφ sinφ 0
− tanφ 1 tanφ 0

0 − sin φ cosφ 0
0 0 0 1







(2.20)

used in Ref. [2] makes the collision as if head-on for α = 0 so that the synchro-beam
mapping can be applied.

2.2.2 Arbitrary crossing plane

We now include the crossing plane angle α by the following similarity transforma-
tion:

L = R−1L0R (2.21)

with

R =







1 0 0 0
0 cosα 0 sinα
0 0 1 0
0 − sinα 0 cosα







(2.22)

or

L =







1/ cosφ − cosα sin φ − tanφ sinφ − sinα sin φ
− cosα tanφ 1 cosα tanφ 0

0 − cosα sin φ cosφ − sinα sin φ
− sinα tanφ 0 sinα tanφ 1






. (2.23)

In order to interpret L in Eq. (2.21) we may introduce a new coordinate system

(
x̃
ỹ

)

=

(
cosα sinα
− sinα cosα

)(
x
y

)

, (2.24)

corresponding to R. Then the crossing plane is identical with the (x̃ − s)-plane (see
Figure 1). Since L0 can be written in the form

L0 =







1/ cosφ − tanφ 0 0
− tanφ 1/ cosφ 0 0

0 0 1 0
0 0 0 1







︸ ︷︷ ︸







1 0 0 0
0 cosφ sinφ 0
0 − sin φ cosφ 0
0 0 0 1







︸ ︷︷ ︸

Boost in the direction of Rotation in the

the rotated x̃-axis (s− x̃)-plane

(2.25)

we define a second coordinate system

(
x̄
s̄

)

=

(
cos φ sin φ
− sinφ cosφ

)(
x̃
s

)

. (2.26)

Then we are left with a boost in the direction of x̄ representing the rotated x̃-axis:

(
t∗

x̄∗

)

=

(
1/ cosφ − tanφ
− tanφ 1/ cosφ

)(
t
x̄

)

. (2.27)
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2.2.3 Full Lorentz boost

As a result of the Lorentz boost we have:







cT ∗

X∗

Z∗

Y ∗







= L







cT
X
Z
Y







; (2.28)







E∗/c
P ∗

X

P ∗
Z

P ∗
Y







= L







E/c
PX

PZ

PY






. (2.29)

Inserting Eq. (2.14) into Eq. (2.29), we get for the transformed momentum of the strong
bunch (E/c = P ): P ∗

x = 0; P ∗
y = 0 since

P ∗
x = −P cosα tanφ+ P sin 2φ cosα− P cosα tanφ cos 2φ

= −P cosα tanφ

[

1 − cos φ

sin φ
2 sinφ cosφ+ (cos2 φ− sin2 φ)

]

= −P cosα tanφ
[
1 − 2 cos2 φ+ cos2 φ− sin2 φ

]

= 0;

P ∗
y = −P sinα tanφ− P sinα tanφ cos 2φ+ P sin 2φ sinα

= 0.

(2.30)

For the test particle px = py = 0, E = cp0 is transformed into p∗x = p∗y = 0 and E∗ =
cp∗0 = cp0 cosφ, i.e. the collision is indeed head-on.

Using Eq. (2.23), the full Lorentz transformation is therefore a transformation
from the accelerator coordinates to Cartesian coordinates, the Lorentz transformation
and again a backwards transformation to the accelerator coordinates:

~x(0) → ~x∗(s∗) (2.31)

leading to:







z∗(s∗)
x∗(s∗)
s∗

y∗(s∗)







= A−1L A







z(0)
x(0)

0
y(0)







=







1/ cosφ 0 0 0
cosα tanφ 1 0 0

0 − cosα sin φ cosφ − sinα sin φ
sinα tanφ 0 0 1













z(0)
x(0)

0
y(0)







(2.32)
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and







p∗z(s
∗)

p∗x(s
∗)

h∗

p∗y(s
∗)







=
p0

p∗0
B−1L B







pz(0)
px(0)
h

py(0)







=










1 − cosα tanφ tan2 φ − sinα tanφ

0 1/ cosφ − cosα
tanφ

cosφ
0

0 0 1/ cos2 φ 0

0 0 − sinα
tanφ

cosφ
1/ cosφ




















pz(0)

px(0)

h

py(0)











.

(2.33)

From Eq. (2.32) we have:

s∗ = −x(0) cosα sinφ− y(0) sinα sinφ (2.34)

so that in general s = 0 is not necessarily transformed to s∗ = 0. Since we need a
transformation from ~x(0) to ~x∗(0∗), an additional transformation

~x∗(s∗) → ~x∗(0∗) (2.35)

has to be performed.
Following Ref. [2], the transformation (2.35) can be written as a first-order Taylor

expansion:

w∗
i (0

∗) = w∗
i (s

∗) − dw∗
i (0

∗)

ds∗
s∗

= w∗
i (s

∗) − h∗i s
∗

= w∗
i (s

∗) + h∗i sinφ[x(0) cosα + y(0) sinα]

(2.36)

with

wi ≡ (x, y, z); h∗i =
∂

∂p∗i
h∗(p∗x, p

∗
y, p

∗
z; p

∗
0). (2.37)

Furthermore we obtain from (2.33) and the Hamiltonian (2.19):

h∗(p∗x, p
∗
y, p

∗
z; p

∗
0) =

1

cos2 φ
h(px, py, pz; p0) = h(p∗x, p

∗
y, p

∗
z; p

∗
0). (2.38)
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Combining the transformations (2.32, 2.33) and (2.36), we finally obtain the equations:

x∗ = z cosα tanφ+ x+ h∗x[x cosα sinφ+ y sinα sinφ]

= z cosα tanφ+ x[1 + h∗x cosα sin φ] + yh∗x sinα sin φ;

y∗ = z sinα tanφ+ y + h∗y[x cosα sinφ+ y sinα sin φ]

= z sinα tanφ+ y[1 + h∗y sinα sinφ] + xh∗y cosα sin φ;

z∗ =
z

cosφ
+ h∗z[x cosα sin φ+ y sinα sinφ];

p∗x =
px

cosφ
− h cosα

tanφ

cosφ
;

p∗y =
py

cosφ
− h sinα

tanφ

cosφ
;

p∗z = pz − px cosα tanφ− py sinα tanφ+ h tan2 φ

(2.39)

representing the result of a Lorentz boost applied to the coordinates of the test particle
which makes the collision as if head-on.

The transformation L of Eq. (2.39) can be represented as the combination of a scale
transformation

(x, y, z; px, py, pz) → (x̃, ỹ, z̃; p̃x, p̃y, p̃z) (2.40)

with
x̃ = x, ỹ = y, z̃ = z;

p̃x =
px

cos φ
, p̃y =

py

cosφ
, p̃z =

pz

cosφ

(2.41)

and a canonical transformation

(x̃, ỹ, z̃; p̃x, p̃y, p̃z) → (x∗, y∗, z∗; p∗x, p
∗
y, p

∗
z) (2.42)

resulting from the generating function

F2(x̃, ỹ, z̃; p
∗
x, p

∗
y, p

∗
z) = x̃p∗x + ỹp∗y +

z̃

cosφ
p∗z+

z̃ tanφ[p∗x cosα + p∗y sinα] + sin φ[x̃ cosα + ỹ sinα]h∗(p∗x, p
∗
y, p

∗
z).

(2.43)

Thus L is only quasi-symplectic; the Jacobian of this transformation is 1/ cos3 φ. This lack
of symplecticity is restored in the backwards transformation L−1 after having applied the
beam-beam force.

2.3 Beam-beam force
We approximate the strong bunch by a number of slices. Each slice is represented by

its Z∗(0∗) coordinate, which shall be denoted by Z†. Taking into account only terms linear

8



with respect to dynamical variables in L, the first and second momenta of the particle
distribution at the locations of the slices are given by:

X† = Z† cosα sinφ; P †
X = 0;

Y † = Z† sinα sinφ; P †
Y = 0;

P †
Z = 0;

Σ†
11 = Σ11; Σ†

22 =
1

cos2 φ
Σ22;

Σ†
33 = Σ33; Σ†

44 =
1

cos2 φ
Σ44;

Σ†
12 =

1

cosφ
Σ12; Σ†

13 = Σ13;

Σ†
14 =

1

cosφ
Σ14; Σ†

23 =
1

cos φ
Σ23;

Σ†
24 =

1

cos2 φ
Σ24; Σ†

34 =
1

cosφ
Σ34.

(2.44)

Inserting Eq. (2.44) into Eqs. (2.5) and (2.10) one obtains:

θ† = θ;

Σ̂†
11 = Σ̂11; Σ̂†

33 = Σ̂33; Σ̂†
13 = Σ̂13,

(2.45)

i.e. the cross section of the strong bunch remains unchanged.
In order to calculate the beam-beam kick, we need to transform Σ̂†

11 and Σ̂†
33 as well

as θ† from the interaction point (IP) to the collision point (CP). The distance between
the two points is given by

S = S(z∗, Z†) =
z∗ − Z†

2
(2.46)

Using Eqs. (2.5), (2.10) and (2.44) we obtain:

Σ̂†
11(S) =

1

2

{

[Σ†
11(S) + Σ†

33(S)]

+sgn(Σ†
11(S) − Σ†

33(S))
√

[Σ†
11(S) − Σ†

33(S)]2 + 4Σ†
13(S)2

}

;

Σ̂†
33(S) =

1

2

{

[Σ†
11(S) + Σ†

33(S)]

−sgn(Σ†
11(S) − Σ†

33(S))

√

[Σ†
11(S) − Σ†

33(S)]2 + 4Σ†
13(S)2

}

,

(2.47)

i.e. we obtain the same result for a slice and the whole bunch, respectively. In a drift space
(e.g. the horizontal plane),

X(S) = X(0) + PX(0)S ; PX(S) = PX(0) (2.48)

9



we have
Σ†

11(S) = Σ†
11(0) + 2Σ†

12(0)S + Σ†
22(0)S2

= Σ11(0) + 2Σ12(0)ϕ+ Σ22(0)ϕ2

≡ Σ11(ϕ);

Σ†
33(S) = Σ†

33(0) + 2Σ†
34(0)S + Σ†

44(0)S2

= Σ33(0) + 2Σ34(0)ϕ+ Σ44(0)ϕ2

≡ Σ33(ϕ);

Σ†
13(S) = Σ†

13(0) + [Σ†
14(0) + Σ†

23(0)]S + Σ†
24(0)S2

= Σ13(0) + [Σ14(0) + Σ23(0)]ϕ+ Σ24(0)ϕ2

≡ Σ13(ϕ)

(2.49)

where ϕ =
S

cos φ
. Thus:

Σ̂†
11(S) = Σ̂11(ϕ);

Σ̂†
33(S) = Σ̂33(ϕ);

θ†(S) = θ(ϕ)

(2.50)

with Σ̂11, Σ̂33 and θ given by (2.5) and (2.10).
The real collision between the test particle and the slice takes place at S, see

Eq. (2.46). To calculate the beam-beam interaction, three subsequent transformations
have to be performed. First, the test particle at the IP is brought to the CP by a drift.
Then the beam-beam interaction is applied and finally the position of the test particle is
brought back to the IP. This set of transformations is called the synchro-beam mapping
(SBM) 2)

It is convenient to introduce a new set of canonical variables at the collision point:

x̄∗ = x∗ + Sp∗x −X†(Z†);

ȳ∗ = y∗ + Sp∗y − Y †(Z†);

z̄∗ = z∗

(2.51)

2) The SBM as described in detail in Ref. [1] can be represented by a Hamiltonian H = Hbb(~x
∗)δ(s∗)

with Hbb defined implicitly by

exp(: Hbb :) =
∏

Z†

exp(: n∗U(x̂∗, ŷ∗; Σ̂11, Σ̂33) :)

describing the interaction of a test particle in the weak bunch with a slice of the strong bunch
represented by Z†.
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and
p̄∗x = p∗x;

p̄∗y = p∗y;

p̄∗z = p∗z −
(p∗x)

2 + (p∗y)
2

4
.

(2.52)

Here we have assumed a drift space between the IP and the CP. In these new variables, the
SBM transformation can be written as concatenation of three symplectic transformations:

exp(− : D :) exp(: Hbb :) exp(: D :) (2.53)

where

D(S) =
(p∗x)

2 + (p∗y)
2

2
S. (2.54)

Note that there is an additional transformation, i.e. a shift by X †(Z†) and Y †(Z†), see
Eq. (2.51). In appendix B, D(S) is calculated in the presence of a solenoid field.

The particle-slice interaction at the CP finally leads to:

(x̄∗, ȳ∗, z̄∗) → (x̄∗, ȳ∗, z̄∗) (2.55)

and
p̄∗x → p̄∗x − n∗F ∗

x ;

p̄∗y → p̄∗y − n∗F ∗
y ;

p̄∗z → p̄∗z − n∗F ∗
z ,

(2.56)

where n∗ is the number of particles in the slice, i.e. the total number N ∗ divided by the
number of slices, and

F ∗
x =

∂

∂x̄∗
Û(x̄∗, ȳ∗; Σ̂11(ϕ), Σ̂33(ϕ); θ(ϕ));

F ∗
y =

∂

∂ȳ∗
Û(x̄∗, ȳ∗; Σ̂11(ϕ), Σ̂33(ϕ); θ(ϕ));

F ∗
z =

∂

∂z̄∗
Û(x̄∗, ȳ∗; Σ̂11(ϕ), Σ̂33(ϕ); θ(ϕ))

=
1

2

∂

∂S
Û(x̄∗, ȳ∗; Σ̂11(ϕ), Σ̂33(ϕ); θ(ϕ))

(2.57)

with Û given by Eq. (2.3).
Introducing the variables

x∗ = w1x̄
∗ + w2ȳ

∗;

y∗ = −w2x̄
∗ + w1ȳ

∗

(2.58)
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(see Eq. (2.4)) with

w1 = cos θ; w2 = sin θ, (2.59)

we can also write:

F ∗
x =

∂

∂x̄∗
U(x∗, y∗; Σ̂11(ϕ), Σ̂33(ϕ))

= w1(ϕ)
∂

∂x∗
U(x∗, y∗; Σ̂11(ϕ), Σ̂33(ϕ))

−w2(ϕ)
∂

∂y∗
U(x∗, y∗; Σ̂11(ϕ), Σ̂33(ϕ));

F ∗
y =

∂

∂ȳ∗
U(x∗, y∗; Σ̂11(ϕ), Σ̂33(ϕ))

= w2(ϕ)
∂

∂x∗
U(x∗, y∗; Σ̂11(ϕ), Σ̂33(ϕ))

+w1(ϕ)
∂

∂y∗
U(x∗, y∗; Σ̂11(ϕ), Σ̂33(ϕ));

F ∗
z =

1

2

∂

∂S
U(x∗, y∗; Σ̂11(ϕ), Σ̂33(ϕ))

=
∂U

∂x∗
[w′

1(ϕ)x̄∗ + w′
2(ϕ)ȳ∗]

1

2 cosφ

+
∂U

∂y∗
[−w′

2(ϕ)x̄∗ + w′
1(ϕ)ȳ∗]

1

2 cosφ

+
∂U

∂Σ̂11

Σ̂′
11(ϕ)

1

2 cosφ

+
∂U

∂Σ̂33

Σ̂′
33(ϕ)

1

2 cosφ

(2.60)

with U defined in Eq. (1.1) and the symbol ‘′’ indicating a differentiation with respect to
ϕ.

Expressions for the terms ∂U/∂x∗, ∂U/∂y∗, ∂U/∂Σ̂11 and ∂U/∂Σ̂33 appearing in
Eq. (2.60) can be found in Ref. [1] (see Eqs. (21), (22), (86), (87)) for a tri-gaussian
distribution.

The terms Σ̂′
11(ϕ) and Σ̂′

33(ϕ) may be obtained by using Eqs. (2.10) and (2.11) and
by taking into account, that the eigenvectors ~vk(s) (k = I, II, III) obey the equations of

12



motion. For a drift space3) they read:

d

ds
vk1 = vk2;

d

ds
vk3 = vk4;

d

ds
vk2 =

d

ds
vk4 = 0.

(2.61)

Using Eq. (2.5) we obtain

Σ̂′
11(ϕ) = C0 + C1 cos[2θ(ϕ)] − C2 sin[2θ(ϕ)];

Σ̂′
33(ϕ) = C0 − C1 cos[2θ(ϕ)] + C2 sin[2θ(ϕ)]

(2.62)

with

C0 = Σ12(0) + Σ34(0) + (Σ22(0) + Σ44(0))ϕ;

C1 = Σ12(0) − Σ34(0) + (Σ22(0) − Σ44(0))ϕ;

C2 = (Σ14(0) + Σ23(0) + 2Σ24(0)ϕ).

(2.63)

The quantities w1 and w2 are determined by Eqs. (2.5) and (2.59). Lastly, in order to
calculate w′

1(s) and w′
2(s) we use the relations

cos 2θ = cos2 θ − sin2 θ

= 2 cos2 θ − 1

= 1 − 2 sin2 θ

=⇒







w′
1(s) ≡ d

ds
cos θ =

1

4 cos θ

d

ds
cos 2θ;

w′
2(s) ≡ d

ds
sin θ = − 1

4 sin θ

d

ds
cos 2θ,

(2.64)

where the trigonometric functions are taken from Eqs. (2.5) and (2.6).
Going back to the original coordinates, the explicit form for the complete SBM is

3) In this case also Eq. 2.49 can serve to calculate the terms Σ′
11(ϕ), Σ′

33(ϕ) and Σ′
13(ϕ) appearing in

Σ̂′
11 and Σ̂′

33.
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given by:

x∗new = x∗ + Sn∗F ∗
x

p∗x,new = p∗x − n∗F ∗
x

y∗new = y∗ + Sn∗F ∗
y

p∗y,new = p∗y − n∗F ∗
y

z∗new = z∗

p∗z,new = p∗z −
1

2

[

n∗F ∗
x (p∗x −

1

2
n∗F ∗

x ) + n∗F ∗
y (p∗y −

1

2
n∗F ∗

y )

]

− n∗F ∗
z .

(2.65)

3 Summary
We have studied the beam-beam interaction for coupled motion in the framework

of the weak-strong formalism taking into account a tilted cross section of the strong
beam induced by linear coupling. This coupling has been included in the 6D beam-beam
formalism of Hirata, Moshammer and Ruggiero.

The extended formalism also allows for an arbitrary crossing plane. Furthermore,
a SBM-solution for solenoid fields is derived which allows to investigate the beam-beam
kick within a solenoid.

A linear model of the beam-beam kick, due to a tilted cross section of the strong
bunch, is investigated in detail in Appendices C and D (beam-beam matrix and dispersion
formalism including beam-beam interaction).

The equations derived in this report have been incorporated into the tracking codes
MAD and SixTrack.
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Appendix A: Calculation of the coupling angle in the X − Y plane
The aim of this appendix is to determine the angle θ by which the principal axes

of the beam ellipse are tilted in the physical (X − Y )-plane.
Linear particle motion can be written as a superposition of the three eigenvectors

~vk (k = I, II, III):

~X(s) =
∑

k=I,II,III

√

Jk[~vk(s)e
−iφk + ~v∗k(s)e

iφk ] (A.1)

with ~X ≡ (X,PX , Y, PY , Z, PZ)T . For the eigenvectors holds:

~vk(s) = M(s, s0)~vk(s0) (A.2)

with
M(s0 + L, s0)~vk(s0) = e−i2πQk~vk(s0) (A.3)

where L is the circumference of the accelerator and Qk the tune for the kth mode. They
obey the orthogonality relations [5] (~v +

k ≡ (~vT
k )∗):







~v+
k (s0)J~vk(s0) = −~v+

−k(s0)J~v−k(s0) = i;

~v+
µ (s0)J~vν(s0) = 0 otherwise,

(A.4)

with
~v−k ≡ ~v∗k (A.5)

and

J =











0 −1 0 0 0 0
1 0 0 0 0 0
0 0 0 −1 0 0
0 0 1 0 0 0
0 0 0 0 0 −1
0 0 0 0 1 0











. (A.6)

In particular one has:

X =
∑

k=I,II,III

√

Jk[vk1e
−iφk + v∗k1e

iφk ];

Y =
∑

k=I,II,III

√

Jk[vk3e
−iφk + v∗k3e

iφk ].

(A.7)

The rotation of the coordinates in the physical plane are given by:

X̃ = X cos θ + Y sin θ;

Ỹ = −X sin θ + Y cos θ.

(A.8)

The rotated horizontal coordinate X̃ reads:

X̃(θ) =
∑

k=I,II,III

√

Jk[(vk1 cos θ + vk3 sin θ)e−iφk + (v∗k1 cos θ + v∗k3 sin θ)eiφk ]. (A.9)
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Averaging over the phase angles φk we arrive at:

1

2
< X̃2(θ) >=

∑

k=I,II,III

Jk[vk1 cos θ + vk3 sin θ][v∗k1 cos θ + v∗k3 sin θ] (A.10)

leading to
E2

h(θ) = E2
x cos2 θ + E2

y sin2 θ + ExGx sin 2θ (A.11)

and using Eq. (2.11) we obtain

E2
x = 2

∑

k=I,II,III

Jkvk1v
∗
k1 ≡ Σ11;

E2
y = 2

∑

k=I,II,III

Jkvk3v
∗
k3 ≡ Σ33;

ExGx = EyGy =
∑

k=I,II,III

Jk[vk1v
∗
k3 + v∗k1vk3] ≡ Σ13;

E2
h(θ) ≡< X̃2(θ) > .

(A.12)

For the vertical plane a similar solution can be obtained:

E2
v(θ) = E2

x sin2 θ + E2
y cos2 θ − EyGy sin 2θ = E2

h(θ + π/2) (A.13)

Eh(θ),Ev(θ) are the maxima of the least squared amplitudes of the particle motion in
θ-direction.

The principal axes E1, E2 can be found by maximising E2
h(θ) − E2

v (θ). This yields
θp

tan 2θp =
2ExGx

E2
x − E2

y

. (A.14)

Choosing

sin 2θp =
2ExGx

N ;

cos 2θp =
E2

x − E2
y

N

(A.15)

we obtain
E2

h(θp) = E2
1 = 1

2

{
[E2

x + E2
y ] + N

}
≡< X̂2 >

E2
v (θp) = E2

2 = 1
2

{
[E2

x + E2
y ] −N

}
≡< Ŷ 2 >,

(A.16)

where N = ±
√

[E2
x − E2

y ]
2 + 4(ExGx)2 . The sign of N may be chosen in such a way that

cos 2θp becomes positive:

N = sgn(E2
x − E2

y)
√

[E2
x − E2

y ]
2 + 4(ExGx)2, (A.17)

i.e. −π/4 ≤ θp ≤ π/4. The beam ellipse with respect to the principal axes (X̂, Ŷ ) can be
written as

X̂
2

E2
1

+
Ŷ

2

E2
2

= 1. (A.18)
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X̂

X

Y

Ŷ Gy

Gx

Ex

Ey

E 2

E 1

pθ

Figure 2: Cross section of the averaged plane (X − Y ).

Figure 2 illustrates the relation between Ex,Ey,Gx,Gy, E1, E2 and θp. Equation (A.18)
can be rewritten for the averaged coordinates X and Y

E2
yX

2 − 2ExGxX Y + E2
xY

2
= E2

1E
2
2 = ε2, (A.19)

with
ε2 = E2

x(E
2
y −G2

x) = E2
y(E

2
x −G2

y) (A.20)

which has the following solution using an arbitrary angle ψ:
(
X(ψ)

Y (ψ)

)

=

(
Ex

Gx

)

cosψ +

(
0

√
E2

y −G2
x

)

sinψ. (A.21)

Note that Eqs. (A.19, A.20), which define the beam cross section, are the result of a
many particle treatment due to the averaging process as described in Eq. (A.10) (see
Refs. [5–7]).

Lastly, we can rewrite tan 2θp as:

sin θp = sgn{(E2
x − E2

y)ExGx}
√

1

2
(1 − cos 2θp)

cos θp =

√

1

2
(1 + cos 2θp).

(A.22)

Coupling angle in the physical X − Y plane
Although the coupling angle is defined for a multi-particle system it is instructive

to relate it to the physical plane (X − Y ) of single particle motion. In this plane motion
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θθp  = 11.09o

θθp  = 17.29o

(a) (b)

(c)

Figure 3: Numerical calculation of the single particle motion in the (X − Y )-plane The
action ratios between horizontal and vertical motion planes are 1:10, 10:1 and 1:1 in part
(a), (b) and (c), respectively. The angle θp is given in degrees. The ellipse represents the
cross section of the averaged (X − Y )-plane.

is restricted to a parallelogram which is tilted due to the linear coupling. Numerical
simulations were carried out for a FODO structure including considerable skew quadrupole
components. Three particles have been tracked over 1000 turns, for mainly horizontal
motion, mainly vertical motion and for a JI = JII beam in Figure 3 (a), (b) and (c),
respectively. In the limit of one dominant plane of motion (see (a) or (b)) the calculated
coupling angle is the angle by which the longer side of the parallelogram is tilted. For the
intermediate case the coupling angle goes to zero when the ellipse approaches the circle,
see Figure 3 (c).

Note that a zero coupling angle does not imply that the motion is decoupled but
instead it means that the eigenplanes are not tilted with respect to the uncoupled case.
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Appendix B: Synchro-Beam Mapping within Solenoid Fields
The synchro-beam map is described by Eq. (2.53), it consists of a transformation

from the IP to the CP, followed by the beam-beam kick and the backwards transformation
to the IP. In this appendix the transformation D(S) from the IP to the CP is generalised
to include solenoid fields. For a particle within a solenoid field one obtains in linear
approximation in S:

x̄∗ = x∗ + S
∂H
∂p∗x

; p̄∗x = p∗x − S
∂H
∂x∗

;

ȳ∗ = y∗ + S
∂H
∂p∗y

; p̄∗y = p∗y − S
∂H
∂y∗

;

z̄∗ = z∗ + S
∂H
∂p∗z

; p̄∗z = p∗z − S
∂H
∂z∗

(B.1)

with S given by Eq. (2.46)

S = S(z∗, Z†) =
z∗ − Z†

2
. (B.2)

The normal coordinates are taken at the interaction point while the barred coordinates
are taken at the collision point. In the following we skip the symbol ‘∗’ which indicates the
Lorentz transformation of the coordinates of the test particle. Note that we temporarily
ignore the contribution of the strong beam (see Eq. (2.51)).

It is most convenient to symplectify Eq. (B.1) such that the total SBM-transformation
is symplectic by definition. In the following, three methods of symplectification shall be
described and applied by using the Hamiltonian of a solenoid field. The last method is
evaluated for arbitrary energies.

1. Generating Function
We introduce the generating function

F2(x, p̄x; y, p̄y; z, p̄z) = xp̄x + yp̄y + zp̄z + SH(x, p̄x; y, p̄y; z, p̄z) (B.3)

in analogy to the method applied by E. Forest and K. Ohmi for the symplectic
integration of complex wigglers [8,9]. The transformation equations due to F2 take
the form:

x̄ =
∂F2

∂p̄x

= x + S
∂H
∂p̄x

; px =
∂F2

∂x
= p̄x + S

∂H
∂x

;

ȳ =
∂F2

∂p̄y

= y + S
∂H
∂p̄y

; py =
∂F2

∂y
= p̄y + S

∂H
∂y

;

z̄ =
∂F2

∂p̄z

= z + S
∂H
∂p̄z

; pz =
∂F2

∂z
= p̄z +

1

2
H + S

∂H
∂z

.

(B.4)

For a solenoid field (with strength H) the Hamiltonian reads:

H(x, px; y, py; z, pz) =
1

2

{
[px + yH]2 + [py − xH]2

}
. (B.5)

The corresponding generating function is

F2(x, p̄x; y, p̄y; z, p̄z) = xp̄x + yp̄y + zp̄z +
S

2

{
[p̄x + yH]2 + [p̄y − xH]2

}
. (B.6)
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Thus:

x̄ =
∂F2

∂p̄x

= x + S[p̄x + yH]; px =
∂F2

∂x
= p̄x − S[p̄y − xH]H;

ȳ =
∂F2

∂p̄y

= y + S[p̄y − xH]; py =
∂F2

∂y
= p̄y + S[p̄x + yH]H;

z̄ =
∂F2

∂p̄z

= z; pz =
∂F2

∂z
= p̄z +

1

4

{
[p̄x + yH]2 + [p̄y − xH]2

}
.

(B.7)

From Eqs. (B.7) we get:

x̄− Sp̄x = x + SyH; p̄x − Sp̄yH = px − SxH2;

ȳ − Sp̄y = y − SxH; p̄y + Sp̄xH = py − SyH2

(B.8)

or






1 −S 0 0
0 1 0 −SH
0 0 1 −S
0 SH 0 1













x̄
p̄x

ȳ
p̄y







=







1 0 SH 0
−SH2 1 0 0
−SH 0 1 0

0 0 −SH2 1













x
px

y
py






. (B.9)

Using the relation:







1 −S 0 0
0 1 0 −SH
0 0 1 −S
0 SH 0 1







−1

=
1

1 + (SH)2







1 + S2 S 0 S2H
0 1 0 SH
0 −S2H 1 + (SH)2 S
0 −SH 0 1







(B.10)
we obtain from (B.9):







x̄
p̄x

ȳ
p̄y







=
1

1 + (SH)2







1 S SH S2H
−SH2 1 −S2H3 SH
−SH −S2H 1 S
S2H3 −SH −SH2 1













x
px

y
py






, (B.11)

in particular we have:

p̄x + yH =
1

1 + (SH)2
{SH[py − xH] + [px + yH]} ;

p̄y − xH =
1

1 + (SH)2
{−SH[px + yH] + [py − xH]} .

(B.12)

Inserting Eqs. (B.12) into (B.7), we finally get:

p̄z = pz −
1

4

1

1 + (SH)2
{
[px + yH]2 + [py − xH]2

}
. (B.13)

Note that z remains unchanged (see Eq. (B.7)).
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Remark:

For H = 0 (drift space), we obtain from Eqs. (B.7), (B.11) and (B.13) the transfor-
mation equations:

x̄ = x + Spx; p̄x = px;

ȳ = y + Spy; p̄y = py;

z̄ = z; p̄z = pz −
1

4
(p2

x + p2
y)

(B.14)

which are the same as Eqs. (2.51, 2.52) without the extra terms due to the strong
beam.

2. Lie Series
In the following we again skip the symbol ‘∗’ which indicates the Lorentz transfor-
mation of the coordinates of the test particle. The canonical equations of motion:

dx

ds
=
∂H
∂px

;
dpx

ds
= −∂H

∂x
;

dy

ds
=
∂H
∂py

;
dpy

ds
= −∂H

∂y
;

dz

ds
=
∂H
∂pz

;
dpz

ds
= −∂H

∂z

(B.15)

due to a Hamiltonian
H(~x) = H(x, px, y, py, z, pz) (B.16)

can be integrated by Lie-series [10, 11]:

~̄x(s) = exp[(s− s0)D]~x (B.17)

with
~x = (x, px, y, py, z, pz)

T ;

~̄x = (x̄, p̄x, ȳ, p̄y, z̄, p̄z)
T ;

~x ≡ ~x(s0)

(B.18)

and

D =

[
∂

∂px

H(~x)

]
∂

∂x
−
[
∂

∂x
H(~x)

]
∂

∂px

+

[
∂

∂py

H(~x)

]
∂

∂y
−
[
∂

∂y
H(~x)

]
∂

∂py

+

[
∂

∂pz

H(~x)

]
∂

∂z
−
[
∂

∂z
H(~x)

]
∂

∂pz

.

(B.19)

In particular we get for the map from the interaction point (IP) to the collision
point (CP) sCP = sIP + S:

~̄x(sCP ) = exp [SD] ~x ; ~x ≡ ~x(sIP ) (B.20)
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which is not symplectic in general due to the factor S.
In order to symplectify Eq. (B.20), we introduce a new Hamiltonian

HSBM(~x) = SH(~x) (B.21)

by modifying the longitudinal coordinates of motion, leading to the canonical map:

~̄x(sCP ) = exp [DSBM ] ~x (B.22)

with

DSBM =

[
∂

∂px

HSBM(~x)

]
∂

∂x
−
[
∂

∂x
HSBM(~x)

]
∂

∂px

+

[
∂

∂py

HSBM(~x)

]
∂

∂y
−
[
∂

∂y
HSBM (~x)

]
∂

∂py

+

[
∂

∂pz

HSBM(~x)

]
∂

∂z
−
[
∂

∂z
HSBM(~x)

]
∂

∂pz

= SD − 1

2
H(~x)

∂

∂pz

(B.23)

and D given by Eq. (B.19).
Using the Hamiltonian

H(~x) =
1

2

{
[px + yH]2 + [py − xH]2

}
(B.24)

of a solenoid, we obtain:

D = [px + yH]
∂

∂x
+ [py − xH]H

∂

∂px

+[py − xH]
∂

∂y
− [px + yH]H

∂

∂py

;

DSBM = SD − 1

4

{
[px + yH]2 + [py − xH]2

} ∂

∂pz

.

(B.25)

For the longitudinal coordinates we then get:

DSBM z = SDz = 0;

[DSBM ]ν z = 0 for ν ∈ N

(B.26)

resulting in

{exp[DSBM ]} z = z (B.27)
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and

DSBM pz = −1

2
H(~x)

= −1

4

{
[px + yH]2 + [py − xH]2

}
;

[DSBM ]2 pz = −1

2
SDH(~x) = 0;

[DSBM ]ν pz = 0 for ν > 1;

(B.28)

=⇒ {exp[DSBM ]} pz = pz −
1

4

{
[px + yH]2 + [py − xH]2

}
. (B.29)

For the transverse coordinates we have:

DSBM







x
px

y
py







= SD







x
px

y
py







= S







px + yH
pyH − xH2

py − xH
−pxH − yH2







= S







0 1 H 0
−H2 0 0 H
−H 0 0 1
0 −H −H2 0







︸ ︷︷ ︸







x
px

y
py







;

C

(B.30)

[DSBM ]ν







x
px

y
py







= Sν ·Dν







x
px

y
py







= Sν · Cν







x
px

y
py







;

=⇒ {exp[DSBM ]}







x
px

y
py







= {exp[SC]}







x
px

y
py






.

(B.31)

In order to calculate exp[SC], we write:

C = C1 + C2 (B.32)

with

C1 =







0 1 0 0
−H2 0 0 0

0 0 0 1
0 0 −H2 0







; C2 = H







0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0







(B.33)

and
C1 · C2 = C2 · C1

=⇒ exp[SC] = exp[SC1] · exp[SC2].

(B.34)
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Furthermore we obtain:

[C1]
2n = (−1)nH2nI;

[C1]
2n+1 = (−1)nH2nC1

= (−1)nH2n+1







0 1/H 0 0
−H 0 0 0
0 0 0 1/H
0 0 −H 0







(B.35)

(with I an 4 × 4 unity matrix) and thus:

exp[SC1] =
∞∑

n=0

1

(2n)!
(−1)n(∆θ)2nI

+
∞∑

n=0

1

(2n+ 1)!
(−1)n(∆θ)2n+1







0 1/H 0 0
−H 0 0 0
0 0 0 1/H
0 0 −H 0







= I cos ∆θ +







0 1/H 0 0
−H 0 0 0
0 0 0 1/H
0 0 −H 0







sin ∆θ

(B.36)

resulting in:

exp[SC1] =










cos ∆θ
sin ∆θ

H
0 0

−H sin ∆θ cos ∆θ 0 0

0 0 cos ∆θ
sin ∆θ

H
0 0 −H sin ∆θ cos ∆θ










(B.37)

with ∆θ = SH.
In a similar way one can derive:

[C2]
2n = (−1)nH2nI;

[C2]
2n+1 = (−1)nH2n+1

[
1

H
C2

] (B.38)

=⇒ exp[SC2] = I cos ∆θ +

[
1

H
C2

]

sin ∆θ

=







cos ∆θ 0 sin ∆θ 0
0 cos ∆θ 0 sin ∆θ

− sin ∆θ 0 cos ∆θ 0
0 − sin ∆θ 0 cos ∆θ






.

(B.39)

24



Inserting Eqs. (B.37) and (B.39) into Eq. (B.34), we finally obtain (see Eq. (B.31)):










x

px

y

py










= {exp[DSBM ]}










x

px

y

py










=










cos ∆θ
sin ∆θ

H
0 0

−H sin ∆θ cos ∆θ 0 0

0 0 cos ∆θ
sin ∆θ

H
0 0 −H sin ∆θ cos ∆θ










×







cos ∆θ 0 sin ∆θ 0
0 cos ∆θ 0 sin ∆θ

− sin ∆θ 0 cos ∆θ 0
0 − sin ∆θ 0 cos ∆θ













x
px

y
py






.

(B.40)
Eq. (B.11) and Eq. (B.40) are both symplectic approximations of the solenoid kick.
The approximations agree in first-order with respect to ∆θ = SH. In particular, in
the limit of H = 0, which represents a drift space, they give the same results (see
Eq. (B.14)).

3. Integration method
Moreover, we will generalise the function for arbitrary energy. The map ~x(sIP ) →
~̄x(sCP ) can also be obtained by introducing an artificial parameter τ and solving
the canonical equations of motion

~x′ ≡ d

dτ
~x = −J ∂

∂~x
HSBM (B.41)

for ∆τ = 1 with J given by (A.6) (see Eqs. (B.17), (B.22)).
We demonstrate this by using the new Hamiltonian (again denoted by H)

H =
H0(x, px, y, py)

[1 + pz]
, (B.42)

with

H0(x, px; y, py) =
1

2

{
[px + yH]2 + [py − xH]2

}
. (B.43)

generalising thus the Hamiltonian H in Eqs. (B.5) and (B.24) by taking into account
an arbitrary energy of the particles (due to the denominator [1+ pz] in Eq. (B.42)).
Then we have:

HSBM = S
H0(x, px, y, py)

[1 + pz]
(B.44)
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leading to the equations of motion:

x′ =
∂HSBM

∂px

= S
[px + yH]

[1 + pz]
;

p′x = −∂HSBM

∂x
= S

[py − xH]H

[1 + pz]
;

y′ =
∂HSBM

∂py

= S
[py − xH]

[1 + pz]
;

p′y = −∂HSBM

∂y
= −S [px + yH]H

[1 + pz]
;

z′ =
∂HSBM

∂pz

= −S
2

[px + yH]2 + [py − xH]2

[1 + pz]2
;

p′z = −∂HSBM

∂z
= −1

4

[px + yH]2 + [py − xH]2

[1 + pz]
.

(B.45)

From Eqs. (B.45) we get

d

dτ
H0(x, px, y, py) =

∂H0

∂x
x′ +

∂H0

∂px

p′x +
∂H0

∂y
y′ +

∂H0

∂py

p′y

=
∂H0

∂x

∂HSBM

∂px

− ∂H0

∂px

∂HSBM

∂x
+
∂H0

∂y

∂HSBM

∂py

− ∂H0

∂py

∂HSBM

∂y

= S
1

[1 + pz]

{
∂H0

∂x

∂H0

∂px

− ∂H0

∂px

∂H0

∂x
+
∂H0

∂y

∂H0

∂py

− ∂H0

∂py

∂H0

∂y

}

= 0;

=⇒ H0(x, px, y, py) = const.
(B.46)

Thus Eq. (B.45) takes the initial value

p′z = −1

2

H0(x, px, y, py)

[1 + pz]
(B.47)

with the solution

p̄z(τ) = [1 + pz]

√

1 − 1

2

H0(x, px, y, py)

[1 + pz]2
τ − 1

=⇒ p̄z = [1 + pz]

√

1 − 1

2

H0(x, px, y, py)

[1 + pz]2
− 1

(B.48)

where we have used
pz ≡ pz(0);
p̄z ≡ pz(1).

(B.49)

26



From Eqs. (B.45) we obtain

d

dτ

z − Z†

[1 + pz]
=
z′(1 + pz) − (z − Z†)p′z

[1 + pz]2

=
1

[1 + pz]2

{

−z − Z†

4

[px + yH]2 + [py − xH]2

[1 + pz]

+
z − Z†

4

[px + yH]2 + [py − xH]2

[1 + pz]

}

= 0;

=⇒ z̄ − Z†

[1 + pz]
=

z(0) − Z†

[1 + pz(0)]
≡ z − Z†

[1 + pz]

(B.50)

and thus after the synchro-beam mapping we get:

z̄ − Z† = (z − Z†)

√

1 − 1

2

H0(x, px, y, py)

[1 + pz]2
. (B.51)

Finally Eqs. (B.45) can be written as

x′ =
1

2

z − Z†

[1 + pz]
[px + yH]; p′x =

1

2

z − Z†

[1 + pz]
[py − xH]H;

y′ =
1

2

z − Z†

[1 + pz]
[py − xH]; p′y = −1

2

z − Z†

[1 + pz]
[px + yH]H

(B.52)

leading again to Eq. (B.40) for ∆τ = 1 and ∆θ = SH/(1 + pz).
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Appendix C: Linear Beam-Beam model
In this appendix we derive the linear beam-beam model for a single slice. Using

Eq. (1.1) for the whole bunch at the IP, we can write (using Eq. (2.4)):

px = −N∗
∂

∂x
U(x̂, ŷ; Σ̂11, Σ̂33)

= −N∗

{

cos θ
∂

∂x̂
U(x̂, ŷ; Σ̂11, Σ̂33) − sin θ

∂

∂ŷ
U(x̂, ŷ; Σ̂11, Σ̂33)

}

;

py = −N∗
∂

∂y
U(x̂, ŷ; Σ̂11, Σ̂33)

= −N∗

{

sin θ
∂

∂x̂
U(x̂, ŷ; Σ̂11, Σ̂33) + cos θ

∂

∂ŷ
U(x̂, ŷ; Σ̂11, Σ̂33)

}

.

(C.1)

For small values
x̂2 � Σ̂11 ; ŷ2 � Σ̂33 (C.2)

the behaviour is linear [12]:

N∗
∂

∂x̂
U(x̂, ŷ; Σ̂11, Σ̂33) =

1

f1

x̂;

N∗
∂

∂ŷ
U(x̂, ŷ; Σ̂11, Σ̂33) =

1

f2
ŷ

(C.3)

with focal length f1 and f2 defined by

1

f1
=

2N∗rp

γ0(E1 + E2)E1
;

1

f2
=

2N∗rp

γ0(E1 + E2)E2

(C.4)

and with E1 and E2 taken from Appendix A (Eq. (A.16)). Thus:

px = −x̂ 1

f1
cos θ + ŷ

1

f2
sin θ

= − 1

f1
[x cos θ + y sin θ] cos θ +

1

f2
[−x sin θ + y cos θ] sin θ

= −
(

1

f1

cos2 θ +
1

f2

sin2 θ

)

x− 1

2

(
1

f1

− 1

f2

)

y sin 2θ;

py = −x̂ 1

f1
sin θ − ŷ

1

f2
cos θ

= − 1

f1
[x cos θ + y sin θ] sin θ − 1

f2
[−x sin θ + y cos θ] cos θ

= −1

2

(
1

f1

− 1

f2

)

x sin 2θ −
(

1

f1

sin2 θ +
1

f2

cos2 θ

)

y.

(C.5)
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In matrix form we may write:

~x(sIP + 0) = T bb~x(sIP − 0) (C.6)

with

T bb =











1 0 0 0 0 0
−F1 1 −F 0 0 0

0 0 1 0 0 0
−F 0 −F2 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1











(C.7)

and

F1 =
1

f1
cos2 θ +

1

f2
sin2 θ;

F2 =
1

f1
sin2 θ +

1

f2
cos2 θ;

F =
1

2

(
1

f1

− 1

f2

)

sin 2θ.

(C.8)

The equations of motion (C.6) can be obtained from the Hamiltonian

Hbb =

{
1

2
F1x

2 +
1

2
F2y

2 + Fxy

}

δ(s− sIP ). (C.9)

Note that T bb in (C.7) contains quadrupole components (F1 and F2), focusing in
both transverse planes. In addition there appears a skew quadrupole component (F )
resulting from the rotation angle θ of the cross section due to the strong beam (F vanishes
for θ = 0).
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Appendix D: Dispersion formalism including the beam-beam kick

Canonical Transformation

The Hamiltonian for the whole ring consisting of bending magnets, quadrupoles,
skew quadrupoles and solenoids, including the beam-beam kick in linear form, reads:

H = H0 + Hbb (D.1)

with [13, 14]

H0(x, y, z; px, py, pz; s)

=
1

2

1

γ2
0

p2
z − [xKx + yKy]pz

+
1

2

{
[px + yH]2 + [py − xH]2

}

+
1

2

{[
K2

x + g
]
x2 +

[
K2

y − g
]
y2 − 2Nxy

}

− 1

2
z2 1

β2
0

eV (s)

E0
h

2π

L
cosϕRF

(D.2)

(h is the harmonic number, V (s) is the RF voltage of the cavity and ϕRF is the RF phase)
where the following abbreviations have been introduced:

g =
e

p0c

(
∂By

∂x

)

x=y=0

;

N =
1

2

e

p0c

(
∂Bx

∂x
− ∂By

∂y

)

x=y=0

;

H =
1

2

e

p0c
Bs(0, 0, s);

Kx =
e

p0c
By(0, 0, s);

Ky = − e

p0c
Bx(0, 0, s).

(D.3)

Note: the second term of the Hamiltonian is due to solenoid fields (H) which have been
treated in Appendix B. Hbb is given by Eq. (C.9) in Appendix C. The Hamiltonian (D.1)
then leads to the canonical equations of motion:
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d

ds
x = px + yH;

d

ds
px = pzKx − [K2

x + g]x+Ny

+[py − xH]H − [xF1 + yF ] δ(s− sIP );

d

ds
y = py − xH;

d

ds
py = pzKy − [K2

y − g]y +Nx

−[px + yH]H − [yF2 + xF ] δ(s− sIP );

d

ds
z = −[xKx + yKy] +

1

γ2
0

pz;

d

ds
pz =

1

β2
0

z
eV (s)

E0
h

2π

L
cosϕRF .

(D.4)

Note that the linear transverse betatron oscillations and the longitudinal motion
(Eqs. (D.4) ) are coupled by the terms

pzKx, pzKy and − [xKx + yKy] (D.5)

respectively, i.e. depending on the curvature of the orbit in the bending magnets.

In order to simplify these equations we introduce dispersion

~D(s) =







D1(s)
D2(s)
D3(s)
D4(s)







;

~D(s) = ~D(s+ L).

(D.6)

New variables x̃, p̃x, ỹ, p̃y, z̃, p̃z can be introduced which satisfy the dispersion relation:

x̃ = x− pzD1;

p̃x = px − pzD2;

ỹ = y − pzD3;

p̃y = py − pzD4.

(D.7)

This replacement

(x, px, y, py, z, pz) −→ (x̃, p̃x, ỹ, p̃y, z̃, p̃z) (D.8)

31



can be achieved using the generating function [14–17] :

F2 (x, y, z, p̃x, p̃y, p̃z) = p̃x[x− p̃zD1] + p̃zxD2

+p̃y[y − p̃zD3] + p̃zyD4

−1
2
[D1D2 +D3D4]p̃

2
z + p̃zz

(D.9)

with the result that :

x̃ =
∂F2

∂p̃x

= x− p̃zD1;

px =
∂F2

∂x
= p̃x + p̃zD2;

ỹ =
∂F2

∂p̃y

= y − p̃zD3;

py =
∂F2

∂y
= p̃y + p̃zD4;

z̃ =
∂F2

∂p̃z

= z + [−p̃xD1 + xD2 − p̃yD3 + yD4]

−[D1D2 +D3D4]p̃z

= z + {−p̃xD1 + [x−D1p̃z]D2

−p̃yD3 + [y −D3p̃z]D4}

= z + [−p̃xD1 + x̃D2 − p̃yD3 + ỹD4]

= z + [−pxD1 + xD2 − pyD3 + yD4];

pz =
∂F2

∂z
= p̃z

(D.10)

and

H̃ = H +
∂F2

∂s
. (D.11)
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In matrix form Eqs. (D.10) read :

~̃x = K~x; ~x = K−1~̃x; (D.12)

with

~̃x =











x̃
p̃x

ỹ
p̃y

z̃
p̃z











(D.13)

and

K(s) =











1 0 0 0 0 −D1

0 1 0 0 0 −D2

0 0 1 0 0 −D3

0 0 0 1 0 −D4

D2 −D1 D4 −D3 1 0
0 0 0 0 0 1











;

K−1(s) =











1 0 0 0 0 D1

0 1 0 0 0 D2

0 0 1 0 0 D3

0 0 0 1 0 D4

−D2 D1 −D4 D3 1 0
0 0 0 0 0 1











.

(D.14)

Note that K(s) is symplectic:

KT (s)J K(s) = J (D.15)

(with J given by Eq. (A.6)).
Taking into account the defining equations for the dispersion in the general case of

arbitrary velocity β0:

d

ds
D1 = D2 +HD3;

d

ds
D2 = +[D4 −HD1]H − [K2

x + g]D1 +ND3

−[F1D1 + FD3] δ(s− sIP ) +Kx;

d

ds
D3 = D4 −HD1;

d

ds
D4 = −[D2 +HD3]H +ND1 − [K2

y − g]D3

−[F1D3 + FD1] δ(s− sIP ) +Ky,

(D.16)
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the new Hamiltonian reads:

H̃ =
1

2

{
[p̃x + ỹH]2 + [p̃y − x̃H]2

}

+
1

2

{
[K2

x + g]x̃2 + [K2
y − g]ỹ2

}
−Nx̃ỹ

−1

2
[(KxD1 +KyD3) − 1/γ2

0 ]p̃
2
z

− 1

β2
0

h
2π

L

eV

E0

cosϕRF × 1

2
{z̃ + [p̃xD1 − x̃D2 + p̃yD3 − ỹD4]}2

+

[
1

2
x̃2F1 +

1

2
ỹ2F2 + Fxy

]

δ(s− sIP ).

(D.17)

Note that the dispersion vector ~D is the periodic solution of the linearised equations
of orbital motion when the cavities are excluded and pz = 1.

The coupling terms (see (D.5)) arising from the orbit curvature disappear. Instead,
there is a term

−1

2
{z̃ + [p̃xD1 − x̃D2 + p̃yD3 − ỹD4]}2 1

β2
0

h
2π

L

eV

E0
cosϕRF

which disappears when all four dispersion terms (D1, D2, D3, D4) are equal to zero at
the location of the cavities.

For further analysis we split the Hamiltonian (D.17) into three parts:

H̃ = H̃0 + H̃1 + H̃2 (D.18)

with

H̃0 =
1

2

{
[p̃x + ỹH]2 + [p̃y − x̃H]2

}

+
1

2

{
[K2

x + g]x̃2 + [K2
y − g]ỹ2 −Nx̃ỹ

}

−1

2
[(KxD1 +KyD3) − 1/γ2

0 ]p̃
2
z

− 1

β2
0

h
2π

L

eV

E0

cosϕRF

1

2
z̃2;

H̃1 = − 1

β2
0

h
2π

L

eV

E0

cosϕRF×

1

2
[p̃xD1 − x̃D2 + p̃yD3 − ỹD4]

×{2z̃ + [p̃xD1 − x̃D2 + p̃yD3 − ỹD4]} ;

H̃2 =

[
1

2
x̃2F1 +

1

2
ỹ2F2 + Fxy

]

δ(s− sIP ),

(D.19)
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where we have gathered in H̃1
all terms of the cavities producing synchro-betatron cou-

pling and in H̃2
the terms resulting from the beam-beam interaction.

In terms of the variables x̃, p̃x, ỹ, p̃y, z̃, p̃z, Eq. (D.4) then takes the form :

d

ds
~̃x = A(0)~̃x+ A(1)~̃x+ A(2)~̃x (D.20)

with

A(0)~̃x = −J ∂H̃
0

∂~̃x
=⇒ A(0)

mn = −Sml

∂2H̃0

∂yl∂yn

;

A(1)~̃x = −J ∂H̃
1

∂~̃x
=⇒ A(1)

mn = −Sml

∂2H̃1

∂yl∂yn

.

A(2)~̃x = −J ∂H̃
2

∂~̃x
=⇒ A(2)

mn = −Sml

∂2H̃2

∂yl∂yn

.

(D.21)

In detail one obtains from Eqs. (D.19) :

A(0)(s) =

(

A
(β)
4×4(s) 0 2×2

0 2×4 A
(z)
2×2(s)

)

(D.22)

A(1)(s) =
1

β2
0

eV (s)

E0
h

2π

L
cosϕRF

×





D2
~D −D1

~D D4
~D −D3

~D − ~D ~04

0 0 0 0 0 0
−D2 D1 −D4 D3 0 0





A(2)(s) =











0 0 0 0 0 0
−F1 0 −F 0 0 0

0 0 0 0 0 0
−F 0 −F2 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0











δ(s− sIP )

(D.23)

with

A
(β)
4×4(s) =







0 1 H 0
−(K2

x + g +H2) 0 N H
−H 0 0 1
N −H −(K2

y − g +H2) 0







; (D.24)

A
(z)
2×2(s) =





0 −[(KxD1 +KyD3) − 1/γ2
0 ]

1

β2
0

eV (s)

E0
h

2π

L
cosϕRF 0



 (D.25)

and ~D defined by Eq. (D.6).

Here the matrix A(1) results from the synchro - betatron coupling induced by the
cavities and A(2) results from the beam-beam kick.
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The tune shifts induced by A(1) and A(2) can be obtained by determining the tunes

with and without H̃1
and H̃2

or by perturbative methods as described in Ref. [18,19]. In a
similar way one can calculate the distortion of the dispersion induced by the beam-beam
kick.

The Eigenvalue Spectrum of the Orbital Revolution Matrix
The solution of the original Hamiltonian (D.1) can be written as:

~x (s) = M(s, s0) ~x (s0) (D.26)

which defines the linear transfer matrix M(s, s0) corresponding to the variables
(x, y, z; px, py, pz).

Note that M(s, s0) is symplectic [18] :

MT (s, s0)J M(s, s0) = J. (D.27)

Thus the (normalised) eigenvectors of the revolution matrix :

M(s0 + L , s0)~vk(s0) = e−i2πQk~vk(s0);

Q−k = −Qk; (k = I, II, III)

(D.28)

obey the orthogonality relations (see Eq. (A.4)), where we have assumed that the stability
condition :

Qk real number (D.29)

is satisfied.

Putting

~vk(s) = ~̂vk(s)e
−i2πQk(s/L) (D.30)

we obtain from (D.28) :
~̂vk(s+ L) = ~̂vk(s) (D.31)

(Floquet theorem). Using this result, action-angle variables for coupled motion can be
introduced as described in Ref. [18].

The introduction of the dispersion has been accomplished by the matrix K (see
Eq. (D.12)):

~̃x = K~x; ~x = K−1~̃x. (D.32)

Using the transfer matrix M(s, s0) we can write:

~̃x(s) = K(s)M(s, s0)K
−1(s0) ~̃x(s0), (D.33)

showing that the transfer matrix M̃(s, s0) can be represented as [20]:

M̃(s, s0) = K(s)M(s, s0)K
−1(s0). (D.34)

In particular one has:

M̃(s0 + L, s0) = K(s0)M(s0 + L, s0)K
−1(s0). (D.35)
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For the eigenvectors one gets:

~̃vk(s0) = K(s0)~vk(s0) (D.36)

since

M̃(s0 + L, s0)K(s0)~vk(s0) = K(s0)M(s0 + L, s0)K
−1(s0)K(s0)~vk(s0)

= K(s0)M(s0 + L, s0)~vk(s0)

= e−i2πQkK(s0)~vk(s0).

(D.37)

Note that the eigenvalues and thus the Q - values remain unchanged:

Q̃k = Qk. (D.38)

The orthogonality relations for the new eigenvectors ~̃vk are still valid. Furthermore,
M̃(s, s0) is symplectic as it is obtained by a similarity transformation of M with K.

Decoupled Motion; Twiss Parameters
In the case of vanishing dispersion within the cavities the revolution matrix M̃(s0 +

L, s0) has the simple block-diagonal form :

M̃(s0 + L, s0) =

(

M
(β)
(4×4)(s0 + L, s0) 0(4×2)

0(2×4) M
(z)
(2×2)(s0 + L, s0)

)

(D.39)

where M
(β)
(4×4)(s0+L, s0) corresponds to the (transverse) betatron motion and M

(z)
(2×2)(s0+

L, s0) to the (longitudinal) synchrotron oscillations.

Furthermore, the 2-dimensional revolution matrixM
(z)
(2×2)(s0+L, s0) which is defined

by the equations of synchrotron motion :

d

ds
z̃ = − [(Kx ·Dx +Ky ·Dy) − 1/γ2

0 ] · p̃z ;

d

ds
p̃z =

1

β2
0

· h · 2π

L
· eV (s0)

E0
cosϕRF · z̃

(D.40)

(see Eq. (D.25) ) can be represented in the form :

M
(z)
(2×2)(s0 + L, s0) =

(
cos 2πQz + αz(s0) · sin 2πQz βz(s0) · sin 2πQz

−γz(s0) · sin 2πQz cos 2πQz + αz(s0) · sin 2πQz

)

(D.41)
with

βz · γz = α2
z + 1 . (D.42)

From these equations one sees that the eigenvectors ~̃vk(s0) can be written as :

~̃vk =

(

~v
(β)

k

~02

)

; (k = I, II) ;

~̃vIII =

(
~04

~tz

)

; ~tz ≡
(
tz1

tz2

)

= 1√
2βz(s0)

·
(

βz(s0)
−[αz(s0) + i]

)

· e−iψz(s0).

(D.43)
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In the absence of skew quadrupoles (N = 0) and solenoids (H = 0) (the coupling
term Fxy vanishes in (D.19)), the betatron oscillations are decoupled, leading to:

M
(β)
(4×4)(s0 + L, s0) =

(

M
(x)
(2×2)(s0 + L, s0) 0(2×2)

0(2×2) M
(w)
(2×2)(s0 + L, s0)

)

;

M
(y)
(2×2)(s0 + L, s0) =

(
cos 2πQw + αw sin 2πQw βw sin 2πQw

−γw sin 2πQw cos 2πQw + αw sin 2πQw

)

;

βw · γw = α2
w + 1 ; (w ≡ x, y).

(D.44)
As a result, the vectors ~̃vI and ~̃vII then take a form similar to ~̃vIII :

~v
(β)

I =

(
~tx
~02

)

; ~v
(β)

II =

(
~02

~ty

)

;

~tw ≡
(
tw1

tw2

)

=
1

√

2βw(s0)
·
(

βw(s0)
−[αw(s0) + i]

)

· e−iψw(s0) ;

(D.45)

(w ≡ x, y) .
It is easy to generalise this treatment to the coupled case, see Ref. [18].
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List of symbols
The symbols used in this report are listed with a brief description of the quantity

they represent.

Greek symbols Page
α crossing plane angle 3
αi, βi, γi Twiss parameters 38
β0 relativistic β 30
γ0 Lorentz factor 1
φ half crossing angle between opposite bunches 3
ψ arbitrary angle parameter 17
τ artificial integration parameter 25
θ arbitrary coupling angle 1
θp coupling angle with respect to the principal axes 16
Σ beam size matrix 1
ϕ substitutes S/ cosφ 10
ϕRF phase angle of the cavity 30
φk eigenphases of coupled motion 3

Latin symbols Page
A transformation matrix (lab. ⇒ acc.) for the coordinates 4

A(n) transfer matrix including coupled beam-beam force and the cavity 35
B transformation matrix (lab. ⇒ acc.) for the momenta 4
B magnetic field vector 30
C transfer matrix for solenoid kick 23
~D orbit dispersion function 31
D(S) transformation from IP to CP 11
D, DSBM differential operators 21, 22
E energy for test particle or bunch 4
E1, E2 horizontal, vertical principal axis of coupled motion 3
Eh, Ev horizontal, vertical amplitude of the particle motion 16
Ex, Ey horizontal, vertical coupling parameter 16
T bb linear beam-beam matrix 29
f linear beam-beam focal length 28
F inverse linear beam-beam focal length including coupling 29
F2 generating function 8
F ∗

x , F ∗
y , F ∗

z horizontal, vertical, longitudinal synchro-beam force 11
g quadrupole strength 30
Gx, Gy crossterm coupling parameters 16
h harmonic number 30
h(px, py, pz) Hamiltonian in accelerator coordinates 4
H solenoid field strength 19
H, Hbb Hamiltonian 10
I unity matrix 24
Jk invariants of coupled motion 3
k mode number 2
Kx, Ky horizontal, vertical curvatures 30
K transfer matrix including beam-beam and dispersion 33
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Latin symbols, continued Page
L circumference of accelerator 2
L0 Lorentz boost matrix 5
L coupled Lorentz boost matrix 5
L Lorentz transformation 8
M 6D transfer matrix 15
N skew quadrupole strength 30
N∗ number of particles in a bunch 11
n∗ number of particles in a slice 11

N
√

[E2
x − E2

y ]
2 + 4(ExGx)2 16

0 zero matrix 35
P momentum of the bunch 3
p0 momentum of the test particle 4
Qx,y,z betatron tune 37
Qk betatron tune of eigenmodes 2
R crossing angle similarity transformation 5
rp classical particle radius 1
s longitudinal position 4
S distance between test particle and strong bunch 9
J anti-symmetric matrix of symplectic formulation 15
T bb linear beam-beam matrix 29
U uncoupled electric potential 1

Û coupled electric potential 1
vk eigenvalues of coupled motion 3
V RF voltage of the cavity 30
~x coordinates of the test particle 1
~̂x coordinates of the coupled test particle 1
~̃x coordinates of the tilted test particles 5
~xC coordinates of the transformed test particle (lab. ⇒ acc.) 4
~x∗ coordinates of the Lorentz boosted test particle 6
~̄x tilted coordinates of the test particle in the crossing plane 5
~̄x
∗

coordinates of the test particle after synchro-beam mapping 5
~x∗ coordinates of the coupled test particle after synchro-beam mapping 11
~X coordinates of the bunch 1
~̂
X coordinates of the coupled bunch 3
~̃X coordinates of the tilted bunch 15
~X† coordinates of the slice of the bunch 8

X̂ coordinates of the bunch in the averaged plane 16
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