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Abstract
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has been extended to include linear coupled motion and an arbitrary crossing plane. The tech-
nique of symplectic mapping in the six-dimensional phase space, called synchro-beam mapping
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model including coupling is discussed in detail, also in the framework of a six-dimensional sym-
plectic dispersion formalism.
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1 Introduction

The beam-beam interaction is studied in storage rings, using the formalism devel-
oped by Hirata, Moshammer and Ruggiero (synchro-beam mapping and a Lorentz boost
transforming the collision with a crossing angle to a head-on collision). In this approach
the strong bunch is split longitudinally into several slices, where each slice is described by
an electrostatic potential of the form

72 y?
o~ €XD (— — )
2% 2%
Uz, y: St Sas) = _Tp 11t u 33+ U dus.
Yo Jo V2511 +u /233 +u
Here 7, is the classical particle radius, 7 is the Lorentz factor of the test particle and X

is the 6 x 6 phase-space envelope matrix of the strong bunch defined by

(1.1)

Y=< XX >—-<X;>< X, > ,i,5=1,...,6 (1.2)

where the lowercase x, y and the uppercase X, Y stand for the transverse coordinates
of the test particle and the strong bunch with X = (X, Px;Y, Py; Z, P7)T, respectively.
In addition, a new technique of symplectic mapping in the six-dimensional phase space,
called synchro-beam mapping (SBM), has been introduced by these authors in Ref. [1].
It allows to include the bunch length effect at the collision point and the energy variation
caused by the electric field of the opposite bunch. This mapping is formulated only for
head-on collision, but Hirata has shown that a crossing angle can be eliminated by a
Lorentz-boost [2].

Eq. (1.1) is valid for the case of uncoupled motion. The aim of this report is to
extend the formalism so as to include six-dimensional linear coupling.

This paper is organised as follows: In section 2 the beam-beam kick is studied in the
most general form. The tilted cross section induced by coupling, which is needed in section
2 is calculated in appendix A. In Appendix B we describe methods to construct SBM-
solutions for a solenoid field which allow us to investigate the beam-beam kick within a
solenoid. The SBM-solution is obtained by the use of a generating function, of Lie-series
or by an integration method. A linear model of the beam-beam kick including coupling is
studied in Appendices C and D, concerning the derivation of the linear beam-beam ma-
trix, the tune-shift caused by a beam-beam kick and a linear six-dimensional dispersion
formalism including the beam-beam interaction. Lastly, a summary of the results is pre-
sented in section 3. The 6D beam-beam formalism has been incorporated in the tracking
programs MAD [3] and SixTrack [4].

2 Beam-beam kick for coupled motion
2.1 The electromagnetic field due to a tilted bunch

The generalisation of the analysis in Refs. [1,2] by including coupling and a tilted
strong bunch (caused by coupling) can be achieved in a straightforward manner by describ-
ing the particle motion in the framework of the fully coupled six-dimensional formalism
and by replacing the electric potential U of Eq. (1.1) for an untilted bunch by a new
potential

72 72
e’} p (_ ~ - —= )
T(x,y: S, b5, § r 25, 25,
U('r?ya Z:117 Z:3379> = U(Z’,y, 211, 233) - __P 11+ u 33 +u du7

Yo Jo \/2211 + U\/Qigg +u
(2.3)
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where the symbol 7 denotes quantities in the coupled frame of reference. The coupling
has to be considered for the test particle as well as for the strong bunch.

2.1.1 Test particle

The potential (2.3) is obtained from (1.1) by introducing a rotated coordinate sys-
tem of the test particle (for details see Appendix A):

T =uxcosf+ ysind,
y = —xsinf + ycosd (2.4)
where 6 denotes the coupling angle of the strong bunch given by V:
2%
sin 26 = —sgn(Xy; — Xa3) - 1 —;
VIS — Dp]? + 433,
Yiu—2
cos 26 = Sgn(En — 233) . ( 1 33) 5 ; (25)
VIEn — Sas? + 432,
2Xh3
— tan2 = —————
Y1 — Xa3
or
1
sinf) = —sgn{ (X1 — X33)X13} 5 (1 — cos 26)
(2.6)
1
cosf = 5 (14 cos 20).

2.1.2 Strong bunch

For the strong beam we have the same transformation (2.4) for X and Y among the
coordinates X = (X, Px;Y, Py; Z, P;)T. The linear particle motion can be represented as
a superposition of eigenmodes as shown in [5]. Denoting by Ji and ¢y (k= I,11,111) the
action-angle variables

X(s)= Y Ilti(s)e ¥ + i ] (2.7)

k=III,IIT

where v (s) (k= I,11,111) describe the eigenmotion with the linear 6D transfer matrix
from longitudinal position sy to s:

Uk(s) = M(s, s0)Uk(S0) (2.8)

with
M (5o + L, 50)0(s0) = e ™k (s0) (2.9)
1) We have chosen 0 = —0, defined in Appendix A, since the strong bunch rotates in the opposite

direction of the test particle. In a double-ring machine such as the LHC this is not necessarily true.



(L is the circumference of the accelerator and @y, the tune for the k™ mode). The rotated
> can be expressed by the elements of the unrotated X-matrix:

N N 1
Y=< X?> = 5 {[211 + Ya3] +sgn(Xn — Z333)\/[211 — Mg3)* + 42%3}

(2.10)
. . 1
Yy =< V2> = 5 {[211 + Yg3] —sgn(¥y; — Z33)\/[211 — Ya3)? + 42?3} :
These elements are a function of the eigenvectors:
Yu=< X?2> = Z 2 Uk1 gy
k=I,I1,IT1
233 =< Y2 > = Z 2kak3UZ3§ (211)
k=I,IT,ITT
213 =< XY > = Z Jk[vklv]:?, + Ul;klvk?’]'
k=I,IT,ITT

Note that

By =\/S11, By = /353 (2.12)

are the principal axes of the elliptical cross section
— +—==1 (2.13)

in the (X —Y)-plane.

Conversely to Ref. [2], the crossing angle 2¢ can be chosen in an arbitrary crossing
plane (¥ — s), defined by an angle a (see Fig. 1). We can write the components of the
strong bunch in a Cartesian coordinate system (X, Y, Z; P,, P, P,) defined for the
laboratory frame and oriented according to the ideal orbit of the test particle as:

P, = Psin2¢cosa;

P, = Psin2¢sino; (2.14)
P, = —Pcos2¢,

with P the momentum of the bunch.

2.2 Lorentz boost

The Lorentz boost as described by Hirata consists of a transformation of Carte-
sian to accelerator coordinates and a Lorentz boost which makes the collision between
the bunches head-on. This is necessary because the 6D beam-beam interaction is only
described for a head-on collision. In addition, we include the crossing plane angle a in our
formalism.



Figure 1: Part a.) defines the crossing plane angle « in the (z — y)-plane and part b.)
depicts the total crossing angle 2¢ in the (Z — s)-plane.

2.2.1 Transformation from Cartesian to accelerator coordinates
The following relations of Ref. [2] remain valid:

ct 2(s)
te | Zyf )| (2.15)
zZC S
Yo Yy 8)
where
-1 010
a1 0 1 00
A=A4"= 0O 01 0 (2.16)
0 0 0 1
and
E/C — Do Pz
Pzc Pz
= pnB , 2.17
Pzc — Po Doz h ( )
Pbyc Py
with
1 0 0 O
5,1 101 0 O
B=B" = 1 0 -1 0 (2.18)
00 0 1

and pg being the momentum of the test particle. They describe the connection between
the Cartesian coordinate (z¢, pzc; Yo, Pyc; 2c, Doc; B, t) with E' = ¢p and the accelerator
coordinate & =(x, py; ¥, Py; 2, Pz; h, s) of the test particle with the Hamiltonian

h(pas Py D2) = D> +1— \/(pz +1)2 —p2 — p2. (2.19)



In this case we applied the ultrarelativistic approximation vy = c.
The Lorentz transformation

1/cos¢p —sing —tangsing 0
—tan ¢ 1 tan ¢ 0

Lo 0 —sin¢ cos ¢ 0 (2.20)
0 0 0 1

used in Ref. [2] makes the collision as if head-on for &« = 0 so that the synchro-beam
mapping can be applied.

2.2.2 Arbitrary crossing plane
We now include the crossing plane angle o by the following similarity transforma-

tion:
L=R"'L,R (2.21)
with
1 0 0 0
0 cosa 0 sina
i = 0 0 1 0 (2.22)
0 —sina 0 cosa
or
1/ cos ¢ —cosasing —tan¢gsing —sinasin g
| —cosatan¢ 1 cos atan ¢ 0
L= 0 — cos asin ¢ cos ¢ —sinasin ¢ (2.23)
—sin atan ¢ 0 sin o tan ¢ 1

In order to interpret L in Eq. (2.21) we may introduce a new coordinate system

(aj):(co.soz sma)(x)’ (2.24)
Y —sina  cosa Y

corresponding to R. Then the crossing plane is identical with the (Z — s)-plane (see
Figure 1). Since L, can be written in the form

1/cos¢ —tang 0 0 1 0 0 0
I —tan¢ 1/cos¢ 0 O 0 cos¢ sing 0
=0 0 0 10 0 —sing cos¢ 0
0 0 01 0 0 0 1 (2.25)
Boost in the direction of Rotation in the
the rotated T-azis (s — %)-plane

we define a second coordinate system

(D) -(an (0 -

Then we are left with a boost in the direction of z representing the rotated z-axis:

(2)=(Meme pame) (1) oo

w KI



2.2.8 Full Lorentz boost
As a result of the Lorentz boost we have:

crx cr
X* X
2o | =L 5 | (2.28)
Y+ Y
E*/c E/c
Py | _ Py
P =L P, (2.29)
Py Py

Inserting Eq. (2.14) into Eq. (2.29), we get for the transformed momentum of the strong
bunch (E/c = P): Py = 0; P; = 0 since

P* = —Pcosatan¢ + Psin2¢cosa — P cosatan ¢ cos2¢

T

= —Pcosatang |1 — 09525 2 sin ¢ cos ¢ + (cos? ¢ — sin” @)
sin

= —Pcosatan¢ [1 — 2cos” ¢ + cos® ¢ — sin’ <Zﬂ (2.30)

P* = —Psinatan¢ — Psinatan ¢ cos2¢ + P sin 2¢ sin «
= 0.

For the test particle p, = p, = 0, E = ¢py is transformed into p; = p; = 0 and E* =
cpy = €po cos ¢, i.e. the collision is indeed head-on.

Using Eq. (2.23), the full Lorentz transformation is therefore a transformation
from the accelerator coordinates to Cartesian coordinates, the Lorentz transformation
and again a backwards transformation to the accelerator coordinates:

7(0) — Z*(s") (2.31)
leading to:
2*(s*) 2(0)
5 0
y*(s7) y(0)
(2.32)
1/ cos ¢ 0 0 0 2(0)
cos o tan ¢ 1 0 0 x(0)
0 —cosasing cos¢ —sinasin @ 0
sin « tan ¢ 0 0 1 y(0)



and

Pi(s”) p=(0)
h s h
py(s") py(0)
1 —cosatan¢ tan? ¢ —sin atan ¢ p=(0) (2.33)
t
0 1/cos¢p  —cosa an ¢ 0 p(0)
coSs @
0 0 1/ cos? ¢ 0 h
. tan¢
0 0 —sina—— " 1/ cos ¢ py(0)
From Eq. (2.32) we have:
s* = —x(0) cosasin ¢ — y(0) sin asin ¢ (2.34)
so that in general s = 0 is not necessarily transformed to s* = 0. Since we need a

transformation from #(0) to #*(0*), an additional transformation

7 (%) — (0% (2.35)

has to be performed.
Following Ref. [2], the transformation (2.35) can be written as a first-order Taylor
expansion:

s
= wj(s*) — his* (2.36)
= w}(s*) + h} sin ¢[x(0) cos a + y(0) sin a
with
* 8 * * * * *
wi = (2,y,2); b = 50" (pL, Py P2 00)- (2.37)

op;

Furthermore we obtain from (2.33) and the Hamiltonian (2.19):

* * * * * 1 * * * *
W (py Py P25 D) = mh(pm,py,pz;po) = h(p;, P, P2 Pp)- (2.38)



Combining the transformations (2.32, 2.33) and (2.36), we finally obtain the equations:

*

r* = zcosatan ¢ + x + hilx cos asin ¢ + ysin asin @)
= zcosatan ¢ + x[1 + h% cos asin @] 4+ yh’ sin asin ¢;
y* = zsinatan¢ +y + h;[r cos asin ¢ + ysin asin ¢]

= zsinatan ¢ + y[1 + h; sin asin @] + wh} cos asin ¢;

z

¥ = + h}[x cos asin ¢ + y sin asin @) (2.39)
cos ¢
. Da L tan ¢
= — hcosa ;
Pa cos ¢ cos ¢’
» Dy tan ¢
— _p :
Py cos ¢ S s 0N

D, = D2 —pwcosoztanqﬁ—pysinatan¢+htan2¢

representing the result of a Lorentz boost applied to the coordinates of the test particle
which makes the collision as if head-on.

The transformation £ of Eq. (2.39) can be represented as the combination of a scale
transformation

(%9, 2 Ps, Py, D2) — (2,9, 2 Pa, Dy, P-) (2.40)
with
T=x, Y=Yy, Z=2
PR I VI (241)
T cosg Y cose’ 77 cosd
and a canonical transformation
(@, 9, Z; Py Dy, D) — (27,47, 2% Py, Dy, D) (2.42)
resulting from the generating function
S Sk ok ok Sk ~ ok z *
FQ(‘/L‘7y7 Z;pmvpyapz) =ap, + Yp,y + mpz+
(2.43)

Ztan ¢[p;;, cos a + pj sin a] + sin @[T cos a + g sin alh* (py, P}, )

Thus £ is only quasi-symplectic; the Jacobian of this transformation is 1/ cos® ¢. This lack
of symplecticity is restored in the backwards transformation £7! after having applied the
beam-beam force.

2.3 Beam-beam force
We approximate the strong bunch by a number of slices. Each slice is represented by
its Z*(0*) coordinate, which shall be denoted by ZT. Taking into account only terms linear
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with respect to dynamical variables in £, the first and second momenta of the particle
distribution at the locations of the slices are given by:

Xt =Zicosasing; Pl =0;

YT = ZTsin asin ¢; P; = 0;

P, =0
oo = 1 .
11 — 11, 22 — COSQ(b 22,
1
t_ oyt . 2.44
Ygz = Mgy My = o2 ¢Z44, (2.44)
Sl =Sy Bl = Sy
12 cosg B T3 ;
1 1
DL Y., Y= as
1 cosg T TB T cosg P
1 1
Sh =T D= —— T
2 cos? ¢ S S cos ¢ 3
Inserting Eq. (2.44) into Egs. (2.5) and (2.10) one obtains:

(2.45)

211 = ZA311; 21,3 = ZA333; 213 = ZA3137
i.e. the cross section of the strong bunch remains unchanged.

In order to calculate the beam-beam kick, we need to transform %, and 3%, as well
as 07 from the interaction point (IP) to the collision point (CP). The distance between

the two points is given by
S=S5=2" = 5 (2.46)

Using Eqgs. (2.5), (2.10) and (2.44) we obtain:
~ 1
2h(9) =3 {Eh©) +zh(s)

+agn(Zh(5) - Zh(S)y/IEL(S) - Sl + asly ()

1 (2.47)
25(9) =3 {Eh(®) + k()

—sen(zh(5) - Sh(s)IEh(5) - KR + a8l

i.e. we obtain the same result for a slice and the whole bunch, respectively. In a drift space
(e.g. the horizontal plane),

X(5) = X(0) + Px(0)S;  Px(S) = Px(0) (2.48)

9



we have
211(5) = 211(0) + 22{2(0)5 + 222(0)52

= %11(0) + 2512(0) ¢ + S92(0)p?
= Xn(p);
ng(s) - Egg(o) + 22524(0)3 + 214(0)32

= 253(0) + 2534 (0)p + T4a(0)0? (2.49)

. Thus:

where ¢ =
cos

S1(9) = Sas(e); (2.50)

with 31, 35 and 6 given by (2.5) and (2.10).

The real collision between the test particle and the slice takes place at S, see
Eq. (2.46). To calculate the beam-beam interaction, three subsequent transformations
have to be performed. First, the test particle at the IP is brought to the CP by a drift.
Then the beam-beam interaction is applied and finally the position of the test particle is
brought back to the IP. This set of transformations is called the synchro-beam mapping
(SBM) 2

It is convenient to introduce a new set of canonical variables at the collision point:

T =a*+ Spr— X(Z1);
g o=yt +Spy - YI(ZD); (2.51)

=z

2) The SBM as described in detail in Ref. [1] can be represented by a Hamiltonian H = Hy,(7*)6(s*)
with Hpp defined implicitly by

exp(: Hpp @) = Hexp(: n U (&, 9% 311, Xa3) 2
zt

describing the interaction of a test particle in the weak bunch with a slice of the strong bunch
represented by Z7.

10



and

Dy =D

Py =Dy (2.52)
B . )+ ()

y2 :pz_f'

Here we have assumed a drift space between the IP and the CP. In these new variables, the
SBM transformation can be written as concatenation of three symplectic transformations:

exp(—: D :)exp(: Hy :) exp(: D :) (2.53)
where
() + (py)*
2

Note that there is an additional transformation, i.e. a shift by XT(Z") and YT(ZT), see
Eq. (2.51). In appendix B, D(S) is calculated in the presence of a solenoid field.
The particle-slice interaction at the CP finally leads to:

D(S) = S. (2.54)

(z5,y",z2") — (%, 9", 2%) (2.55)

and
Py — Py — N Er

Py — Py — (2.56)

p; — D, —n'FY,
where n* is the number of particles in the slice, i.e. the total number N* divided by the
number of slices, and

~

O 02,5 S (e), Sas(0): 0(0):

Fr =
v oz*
Fy = 50 @ 720 (0), D) 0(0));
(2.57)
% a ok —%, O 3
Fr = %U(:v 5 211 (p), Xss(w); 0(0))
= U@, 751 (p), a3 (0); 0())
with U given by Eq. (2.3).
Introducing the variables
¥ = w T + wey
(2.58)
Yo = —wel” +wny

11



(see Eq. (2.4)) with

wy = cosf;  wy =sind,
we can also write:
Fr = LUy S0 (), Sl))
x OT* L5 Y &1l ¥), 2433\(P
9 .

Fr o= o (", ¥ X1 (p), sz ()
= un(9) U (", " Sn(), Sss(9)
_w2¢ax* _7g7 11807 3390
8 * * <
+wi(p) 8y*U(— YT E(p), Bz (0));
Fr =20 0y S (e), Sal9))
265 &7_711@733%0
ou ., e ]
e [wi ()" + wh(p)y"] 2 cos ¢
aU / —* / * ]'
+ oy [—wy(p)T" + wy(9)y] S eosd
ou 1
+82—H211(¢)m
oU - 1
—
+8233 33<(p>2(:osgb

(2.59)

(2.60)

with U defined in Eq. (1.1) and the symbol ” indicating a differentiation with respect to

®.

Expressions for the terms oU/dz*, oU/dy*, oU /8211 and oU/ 0333 appearing in

Eq. (2.60) can be found in Ref. [1] (see Eqs. (21), (22), (86), (87)) for a tri-gaussian

distribution.

The terms ¥}, (¢) and 24 () may be obtained by using Eqs. (2.10) and (2.11) and
by taking into account, that the eigenvectors vy (s) (k = I,11,11I) obey the equations of

12



motion. For a drift space®) they read:
d
—Uk1 = Ugo;
ds k1 k2
d
d—vks = Uk4; (2.61)
s
d d 0
—Vky = —Ugs = 0.
75k 75k

Using Eq. (2.5) we obtain

S11() = Co+ Crcos[20(p)] — Casin[20(e0)];

A (2.62)
() = Co — Cicos[20(¢)] + Cosin[20(p)

with
C() = 212(0) + 234(0) + (222(0) + E44(0))§0,
C1 =3%12(0) — X34(0) + (3a2(0) — X44(0))¢; (2.63)

Cy = (214(0) + X23(0) + 2X24(0) ).

The quantities w; and wy are determined by Egs. (2.5) and (2.59). Lastly, in order to
calculate w/(s) and wj(s) we use the relations

cos20 = cos?f —sin? 0
=2cos’0 —1
=1—2sin*6
2.64
i = Lot g o
V)= s T Yeosfds 0
-
d . 1 d
wh(s) E£SIDQZ_4sin6£COSQQ’

where the trigonometric functions are taken from Egs. (2.5) and (2.6).
Going back to the original coordinates, the explicit form for the complete SBM is

3) In this case also Eq. 2.49 can serve to calculate the terms ¥, (), X33(¢) and X93(p) appearing in
Y, and 3%,

13



given by:
xr ="+ Sn*F}

new

R 3 * %
=pr —n*E7

*
pm,new

Ynew =Y+ SNy

Pymew =Py — 1" F (2.65)
2w =2
1 1 1
Dinew =DP:— B n*Fy(p;, — §n*F;) + n*F;(pZ — in*F;) —n*F}.
3 Summary

We have studied the beam-beam interaction for coupled motion in the framework
of the weak-strong formalism taking into account a tilted cross section of the strong
beam induced by linear coupling. This coupling has been included in the 6D beam-beam
formalism of Hirata, Moshammer and Ruggiero.

The extended formalism also allows for an arbitrary crossing plane. Furthermore,
a SBM-solution for solenoid fields is derived which allows to investigate the beam-beam
kick within a solenoid.

A linear model of the beam-beam kick, due to a tilted cross section of the strong
bunch, is investigated in detail in Appendices C and D (beam-beam matrix and dispersion
formalism including beam-beam interaction).

The equations derived in this report have been incorporated into the tracking codes

MAD and SixTrack.
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Appendix A: Calculation of the coupling angle in the X — Y plane

The aim of this appendix is to determine the angle ¢ by which the principal axes
of the beam ellipse are tilted in the physical (X —Y)-plane.

Linear particle motion can be written as a superposition of the three eigenvectors
U (k=1,11,1I1):

X(s)= Y VAlo(s)e ™ + vi(s)e™] (A1)

k=III,II1
with X = (X, Px,Y, Py, Z, Py)T. For the eigenvectors holds:
Uk(s) = M(s, So)Uk(S0) (A.2)

with |

M (sg+ L, 50)T(s0) = e 755 (s0) (A.3)
where L is the circumference of the accelerator and Qj, the tune for the k" mode. They
obey the orthogonality relations [5] (v, = (¢])*):

q;:r(So)lUk(So) = —77_+k(80)111k(80) = 4
(A.4)
U, (s0)JU,(s0) = 0 otherwise,
with
and
0 —-10 0 0 O
1 0 0 0 0 O
0 0 0 —-10 O
d= 0O 01 0 0 O (A-6)
0 0 0 0 0 -1
0O 0 0 0 1 O
In particular one has:
X = Z \/Jk[vkle_w’“—i—vzlew’“];
k=I,I1,IT1
(A.7)
Y = Z V Tk [Urse ™ 4 viaetk].
k=I,IT,ITT
The rotation of the coordinates in the physical plane are given by:
X = Xcosl+Ysinb;
(A.8)

Y = —Xsinf+Y cosé.

The rotated horizontal coordinate X reads:

X(0) = Z vV Ji[(Vg1 cos 0 + vgs sin B)e ™% + (vF, cos O + viy sin 0)e %] (A.9)

k=I,I1,I1I

15



Averaging over the phase angles ¢, we arrive at:
1

5 < X%(0) >= Z Ji[vk1 cos 0 + vgz sin O] [vy; cos 6 + v4 sin 0] (A.10)
k=I,IT,IIT
leading to
E}(0) = EZcos® 0 + E. sin” 0 + E,G, sin 26 (A.11)
and using Eq. (2.11) we obtain
Eg =2 Z JeVk1vy; = Xap;
k=I,I1,ITI
E§ =2 Z Jkvksvis = Yas;
k=I,IT,IIT (A.12)

E.G, =E,G, = Z Jelvk1vgs + vivgs] = Sas;
k=I,IT,ITT
E20) =< X2%(0) >
For the vertical plane a similar solution can be obtained:
E}(0) = Esin®0 + E; cos® 0 — E,G,sin20 = E;(0 +7/2) (A.13)

En(0),E,(0) are the maxima of the least squared amplitudes of the particle motion in
f-direction.
The principal axes Ej, Fy can be found by maximising E7(6) — E?(6). This yields

O,
2F,.G,
tan 26, = ~ EQ' (A.14)
Choosing
2F,G,
sin 20, = N :
(A.15)
E? — B2
cos20, = m/\/ Y
we obtain R
EX6,) =Ei=3i{[E2+E]+N}=<X?>
(A.16)

E2(0,) =E2=1{[E2+F-N}=<Y?>

where N = j:\/[Eg — E2]? + 4(E,G,)?* . The sign of N may be chosen in such a way that

cos 20,, becomes positive:

N = sgn(E? — ng (B2 — E22 + 4(E,G,.)?, (A.17)

ie. —m/4 < 6, < /4. The beam ellipse with respect to the principal axes (X,Y) can be
written as

~2 ~2
X Y
— +-— =1 A18
BB (4-18)
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Figure 2: Cross section of the averaged plane (X —Y).

Figure 2 illustrates the relation between £y, E,, G, G, E1, E5 and 6,. Equation (A.18)
can be rewritten for the averaged coordinates X and Y
EXX' - 2E,G. XY + EXY' = E2E} = &, (A.19)
with
2 2( 2 2 2 2 2
e =L, (E,—-G,)=E/(E;, -G, (A.20)

which has the following solution using an arbitrary angle :

X))\ [ E. 0 .
( V() ) = ( a. )COS¢+ ( iormes )Sln@/). (A.21)
Note that Eqgs. (A.19, A.20), which define the beam cross section, are the result of a
many particle treatment due to the averaging process as described in Eq. (A.10) (see
Refs. [5-7)).

Lastly, we can rewrite tan 20, as:

1
sinf, =sgn{(F2— EZ)EJCGx}\/Q (1 —cos26,)

1
cosl, = \/é (14 cos26,).

Coupling angle in the physical X — Y plane
Although the coupling angle is defined for a multi-particle system it is instructive
to relate it to the physical plane (X —Y') of single particle motion. In this plane motion

17



(b)

0, =17.29°

[ (c)

Figure 3: Numerical calculation of the single particle motion in the (X — Y')-plane The
action ratios between horizontal and vertical motion planes are 1:10, 10:1 and 1:1 in part
(a), (b) and (c), respectively. The angle 6, is given in degrees. The ellipse represents the
cross section of the averaged (X — Y)-plane.

is restricted to a parallelogram which is tilted due to the linear coupling. Numerical
simulations were carried out for a FODO structure including considerable skew quadrupole
components. Three particles have been tracked over 1000 turns, for mainly horizontal
motion, mainly vertical motion and for a J; = J;; beam in Figure 3 (a), (b) and (c),
respectively. In the limit of one dominant plane of motion (see (a) or (b)) the calculated
coupling angle is the angle by which the longer side of the parallelogram is tilted. For the
intermediate case the coupling angle goes to zero when the ellipse approaches the circle,
see Figure 3 (c).

Note that a zero coupling angle does not imply that the motion is decoupled but
instead it means that the eigenplanes are not tilted with respect to the uncoupled case.

18



Appendix B: Synchro-Beam Mapping within Solenoid Fields

The synchro-beam map is described by Eq. (2.53), it consists of a transformation
from the IP to the CP, followed by the beam-beam kick and the backwards transformation
to the IP. In this appendix the transformation D(S) from the IP to the CP is generalised
to include solenoid fields. For a particle within a solenoid field one obtains in linear
approximation in S

T ="+ S—; P, ZPZ—SG—H§
ox*

oH . OH

yo=y+ oyt TP S5 (B.1)
. oH ., oH
¥ =z +S@p’;’ D, =D, S&z*
with S given by Eq. (2.46)
* ZT
S =52 =" TR (B.2)

The normal coordinates are taken at the interaction point while the barred coordinates
are taken at the collision point. In the following we skip the symbol ‘*” which indicates the
Lorentz transformation of the coordinates of the test particle. Note that we temporarily
ignore the contribution of the strong beam (see Eq. (2.51)).

It is most convenient to symplectify Eq. (B.1) such that the total SBM-transformation
is symplectic by definition. In the following, three methods of symplectification shall be
described and applied by using the Hamiltonian of a solenoid field. The last method is
evaluated for arbitrary energies.

1. Generating Function
We introduce the generating function

Fy(x, Pus Y, Dy; 2, P2) = TPy + YPy + 20> + SH(, Pus Y, Py; 2, D2) (B.3)

in analogy to the method applied by E. Forest and K. Ohmi for the symplectic
integration of complex wigglers [8,9]. The transformation equations due to F; take

the form:
_0F, OH _OF, oH
 0F, OH or, OH
y=— =y+S—; py=——=p, +5—; B.4
apy apy Yy ay Yy ay ( )
__0F, OH o, 1 OH
Z_ﬁpz _Z+Saﬁz’ P=="5, _p2+2H+58z'
For a solenoid field (with strength H) the Hamiltonian reads:
1
H(x, pri v, pyi 2,02) = 5 {[px + yH]? + [py — wH|} (B.5)

The corresponding generating function is
o _ _ S _
Fo(w, Doy Dy 2,P:) = 2B + Yy + 2= + 5 {[Pa + yH]* + [py — 2H ]’} . (B.6)
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Thus:

_ aFQ _ aFQ _ _

_ aFQ _ 8F2 _ _

y o, y+ Spy, —xzH]; py o py + S[p. + yH)H,; (B.7)
__8F2 o _8F2__ 1. 9 B 9

P=g =4 B= —pz+4{[px+yH] + [p, — zH]’}.

From Egs. (B.7) we get:

z—Sp, =x+SyH; p.— Sp,H =p, — SzH?;

(B.8)
y—Spy =y—SzH; p,+ Sp,H =p, — SyH’
or
1 =5 0 0 z 1 0 SH 0 x
0 1 0 —SH g | | -sE2 1 0 o Da (B9)
0 0 1 -S g |7 =sH 0o 1 0 y |- "
0 SH 0 1 B, 0 0 —SH? 1 P,
Using the relation:
1 -s0 0o \ ' 1+5 S 0 S°H
0o 1 0 -S| 1 0 1 0 SH
0o 0 1 -5 1+ (SH)? 0 —-S?H 1+(SH)* S
0 SH 0 1 0 —SH 0 1
(B.10)
we obtain from (B.9):
T 1 S SH S*H x
g | 1+(SH)?| —SH -S*H 1 S y |’ '
Dy S?H3 —-SH -SH?> 1 Dy
in particular we have:
1
p. +yH = ———{SH|p, — vH]+ [p. + yH|};
Paty H(SH)Q{ [Py |+ [po +yH]}
(B.12)
1
p, —atH =——"7-—{-SH|p,+yH|+ —xH|}.
Dy 1+(SH)2{ [p= +yH| + [py I}
Inserting Eqs. (B.12) into (B.7), we finally get:
1 1
Py =Py — —————— {[p, +yH> + —xH]*Y. B.13
p-=p 41+(SH)Q{[p yH]* + [p, — v H]"} (B.13)

Note that z remains unchanged (see Eq. (B.7)).



Remark:

For H = 0 (drift space), we obtain from Egs. (B.7), (B.11) and (B.13) the transfor-
mation equations:

x :I—i-pr; Dz = Da;
Y =y+5Spy; Dy = Dy; (B.14)
R D

4
which are the same as Eqgs. (2.51, 2.52) without the extra terms due to the strong
beam.
. Lie Series
In the following we again skip the symbol ‘«’ which indicates the Lorentz transfor-
mation of the coordinates of the test particle. The canonical equations of motion:

dv OH  dp, oH

ds ~— Op, ds = Oz’

dy — OH_ dp, oH

s "o s oy (B.15)
0Ny oH
ds  Op. ds 0z
due to a Hamiltonian
H(Z) = H(@, pas Y, Pys 25 D2) (B.16)
can be integrated by Lie-series [10,11]:
7(s) = exp|(s — s0) D)7 (B.17)
with .
T = (2,00, Y Py 2,02) 75
T = (2,000, Dy % D2)" (B.18)
T = Z(sp)
and 0 0 [0 1 0
D — — i = —
[apr(x)] ox _8907_{(36)_ Opq
[0 10 [0 1 0
+|—H@)| — —|=—H@)| — B.19
L9y ( >_ 9 |0y ( >_ Ipy (B.19)
[0 | 0 o, ] 0
+ _asz(l')_ % - _@H(ZL‘)_ 8pz

In particular we get for the map from the interaction point (IP) to the collision
point (CP) scp = s;p + S:

T(scp) = exp [SD] 7 ; 7= Z(srp) (B.20)
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which is not symplectic in general due to the factor S.
In order to symplectify Eq. (B.20), we introduce a new Hamiltonian

Hspn(T) = SH(E) (B.21)

by modifying the longitudinal coordinates of motion, leading to the canonical map:

T(scp) = exp [Dspu] T (B.22)
with
0 | 0 0 | 0
Dspy = {8prSBM<x>:| or {%HSBM(@] O,
[0 ] 0 [0 N
+ a—pyHSBM(x) 8_y — _8_yHSBM(x)_ 8—py
(B.23)
[0 N e [0 N
+ _aszSBM(x)_ 9 _@HSBMCU)_ op-
1,0
and D given by Eq. (B.19).
Using the Hamiltonian
1
H(Z) = 5 {[p + yH]* + [p, — zH]*} (B.24)
of a solenoid, we obtain:
0 0
D —[pm—l—yH]%jL[py—xH]Hapx
+[p —:EH]E—[p +yH]Hi' (B.25)
Y oy ’ op,’ '
D :SD—E{[p +yHP* +[p —J:H]Q}i
SBM A T Y apz .
For the longitudinal coordinates we then get:
DSBM z =SDz = 0,
(B.26)
[Dsgu]”z =0 forv € N
resulting in
{exp[Dspm|} z = = (B.27)



and
Dspy p. = —=H(Z)

1
=1 {[pm —i—yH]2 + [py — xH]z} :
2 1 .

[Dspum]”p. =0 for v > 1;

= {exp[Dspum]} p. = p. — i {lp. +yH + [p, — xH]*} .

For the transverse coordinates we have:

x x P +yH
Pz Pz p H — tz
D =SD =S v
SBM y y py o ZCH
py py _pr - yH2
0 1 H 0 x
_ g —-H? 0 0 H Da
—-H 0 0 1 Y
0 —-H —H?> 0 Py
¢
x x x
[Dspu]” ];m =S D" ];m =5v-C" Z;x ;
by by Dy
x x
Pz _ Pz
— {explDsol} | 77| = fespiscy} | P
py py
In order to calculate exp[SC], we write:
C= Ql + QQ
with
0o 1 0 O 0 0 1
-H*> 0 0 ©0 0 0 0
G= 0O 0 0 1 ’ Cy=H -1 0 0
0 0 —H? 0 0 -1 0
and
¢, -Gy =C,-C,

= exp[SC] = exp[SC,] - exp[SC,).

O O = O

(B.28)

(B.29)

(B.30)

(B.31)

(B.32)

(B.33)

(B.34)
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Furthermore we obtain:

)" = (e
) = (- Ee,
0 1/H 0 0 (B.35)
—-H 0 0 0
_ (_1\n g2n+1
= (1A o 0 0 1/H
0 0 —-H 0

(with I an 4 x 4 unity matrix) and thus:

ep[SC1] =Y i (1) (A0

= 1 n 2n+1
+;(2n+1)!(_1) o H 0 (B.36)

0 1/H 0 0
—-H 0 0 0 .
= Jcos AO + 0 0 0 1/H sin Af
0 0O —-H 0
resulting in:
sin A6
A
Z') S' GAH HAH 0 0
—H sin oS
0 0 cos Af
0 0 —Hsin A6 cos Af
with A9 = SH.
In a similar way one can derive:
[Co)" = (=)"H™
1 (B.38)
C = a2
1 .
— exp[SC,] = Icos Al + {ﬁQQ} sin A
cos A 0 sin Af 0 (B.39)
- 0 cos Af 0 sin Af
| —sinAf 0 cos Af 0
0 —sin Af 0 cos Af



Inserting Eqgs. (B.37) and (B.39) into Eq. (B.34), we finally obtain (see Eq. (B.31)):

T T cos Af smH AO
Dz — fexp[D I Pz B —Hsin A0 cos Af 0 0 y
— = SBM = in A
Yy Y 0 0 cos Af sin A9
Dy Dy 0 0 —Hsin AO  cos A6
cos Af 0 sin A@ 0 x
0 cos A6 0 sin A6 Da
—sin A6 0 cos Af 0 Y
0 — sin Ad 0 cos Af Dy

(B.40)
Eq. (B.11) and Eq. (B.40) are both symplectic approximations of the solenoid kick.
The approximations agree in first-order with respect to Af = SH. In particular, in
the limit of H = 0, which represents a drift space, they give the same results (see
Eq. (B.14)).

. Integration method

Moreover, we will generalise the function for arbitrary energy. The map Z(s;p) —
Z(scp) can also be obtained by introducing an artificial parameter 7 and solving
the canonical equations of motion

. d 0
= Ex = —J%HSBM (B.41)

for A7 =1 with J given by (A.6) (see Egs. (B.17), (B.22)).
We demonstrate this by using the new Hamiltonian (again denoted by H)

H0<x7pm7y7py)
H = , B.42
Tt o] (B42)
with
1
Ho(w, pai y,py) = 5 {lps + yH]* + [p, — xH]*} . (B.43)

generalising thus the Hamiltonian H in Egs. (B.5) and (B.24) by taking into account
an arbitrary energy of the particles (due to the denominator [1+p,] in Eq. (B.42)).
Then we have:

S'Ho(%pma?/,py) (B44)

Hsnw = [1+ p.]

25



26

leading to the equations of motion:

,_ OHspm  _ lpe +yH]
Tr = — P Tr q »
Opa [1 +pz]
8HSBM [py — LL’H]H
r_ -9 :
Pa ox 1+ p.]
y/: GHSBM :S[py—l‘H];
Ipy 1+ p,]
(B.45)
o :_aHSBM :_S[pm—i-yH]H.
v Ay [1+p]
Z,:aHSBM :_g[pm—l—yH]Q—i—[py—xH]Z.
Ip. 2 [1+p.)? ’
; :_8HSBM :_l[px+yH]Z+[py—xH]Q
P2 0z 4 1+ p.] '

From Egs. (B.45) we get

d Mo, OMy, Mo, M,
%H0<xapm7y7py) - %Jf +

_ OHyOHspm  OHo IHspu n OHo OHspm  OHo OHspum
- Or Op, Op, O Oy  Opy opy, Oy

oxr Op, Op, Ox Jy Op, Op, Oy

Lo 1 [OMOMy OMoOM, | OHoOMy OOy
T+ p.]

= Ho(z, ps, Y, py) = const.

(B.46)
Thus Eq. (B.45) takes the initial value
1
p/Z _ __HO(xapxayvpy) (B47)
2 [1+p.]
with the solution
_ 1 HO(xapmayvpy)
. =11 . 1—— —1
(B.48)
_ 1 Ho(x, pa,y, y)
—p, =|[14+0p, 1—— —1
P> = [1+p] \/ 2 [1+p.2
where we have used 0
p. =p(0);
_ B.49
P =p.(1). (B.49)



From Egs. (B.45) we obtain

d =71 Y +p)—(2-ZNp,
dr [1+ p,] N 1+ p.]?

: {_z_ Z" [pe + yH)* + [py — zH]?
14 p.]? 4 1+ p.]

z—Z1 [p$+yH]2+[py—xH]2} (B.50)
4 [1+p:]

z— 71 200) -2V 22— 27

T ltp]  0+p0)]  [4pd

and thus after the synchro-beam mapping we get:

1 2 Y
s gt = (s gy 1= 2Ty py) (B.51)
2 [1+p.)?
Finally Egs. (B.45) can be written as
1z—27 1z—27
= . +yH|; pl== —xH|H,
D po e Tl = g Aley — ol s
1z—ZT 1 z—ZT .
’ Hl; p, o+ yH]H

leading again to Eq. (B.40) for A7 =1 and A0 = SH/(1 + p.).
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Appendix C: Linear Beam-Beam model

In this appendix we derive the linear beam-beam model for a single slice. Using

Eq. (1.1) for the whole bunch at the IP, we can write (using Eq. (2.4)):

o .
. = —N*—U(z,y; 211, 2
p O (90 Y; 211 33)
= —N*<cosf 8U(:i‘ ) 511, 2 )—sm&gU(i' J: S11, Da3)
= 0 y Yy 2411, 2433 BN y Yy 2411, 2433) 5
* 8 LR
Dy =—-N 8_y (5573/; 2117233)
— —N*{sinf 6’U(:z J; ¥11, Y33) 4 cos f QU@ J; Y11, Ya3)
= 0 y Y5 2411, 2433 BN y Y5 2411, 2433

For small values
P <N 07 < N

the behaviour is linear [12]:

0 A e 1
N*—U(z,y; %11, % = —1;
8@ (1'72/, 11, 33) flx’
[ I
N*a_gU(%y; Y1, s3) = 7Y
with focal length f; and f; defined by
1 2N*r,

fi (B + E)Ey

L 2N*r),
o (B + E2)Es
and with E; and F, taken from Appendix A (Eq. (A.16)). Thus:

1 1
Pe = —T— cosl + y—sinf
1 fa
1 . 1 : .
= ——[zcosf + ysinf] cosf + — [~z sin b + y cos f] sin 6
hi fo
1, 1 .2) 1(1 1) ,
=—|—cos*0+ —sin“f | x—=—— — | ysin26;
(fl f2 2\ f Y
. 0—17 0
= —2—sinf — §— cos
b TR

1 1
= —f—[xcos¢9+ysin0] sinf — —[—xsin @ + y cosf] cos b
1 2

1 1 1 1 1
=—— | ——— ) xsin20 — —Sin29+—60829) .
2(ﬁ ﬁ) (ﬁ 2 Y
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In matrix form we may write:

f(S[P—i-O) :Ibbf(slP —0) (C6>
with
1 0 0 000
-1 —-F 000
0 0 1 000
Ly = —F 0 —-F, 1 00 (C.7)
0 0 0 010
0 0 0 001
and
F = i0052«94— isin29'
A fo
F L in? 0+ L cos? 0 C8
= —sin — cos” 6; :
* T 2 (G8)
1/1 1
= - <— — —) sin 26.
2\ f
The equations of motion (C.6) can be obtained from the Hamiltonian
Lo, 1o
Hw, = §F1:L‘ + éng + Fay ¢ 0(s — srp). (C.9)

Note that T, in (C.7) contains quadrupole components (F; and Fy), focusing in
both transverse planes. In addition there appears a skew quadrupole component (F')
resulting from the rotation angle 6 of the cross section due to the strong beam (F' vanishes

for 6 = 0).
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Appendix D: Dispersion formalism including the beam-beam kick
Canonical Transformation

The Hamiltonian for the whole ring consisting of bending magnets, quadrupoles,
skew quadrupoles and solenoids, including the beam-beam kick in linear form, reads:

H =Hy + Huy (D.l)

with [13,14]
Ho(x, Y, 2; Dz, Pys P23 S)

11,
= 573 p; — [v K, +yK,lp.

+%{[Px+yH]2+[py—$H]2} (D.2)
o {[K2 4 g) 2+ [K2 — g] v — 2Ny}

1 5, 1eV(s), 2r
S A Sy it
22 ﬁg 2 7 COS YRF

(h is the harmonic number, V (s) is the RF voltage of the cavity and pgp is the RF phase)
where the following abbreviations have been introduced:

e <8By>
9 =—\ 5. ;
poc \ O ) .o

. _le (881 8By) ‘
r=y=0

T 2poc \ 0z Oy
1l e
H :éﬁBS(O,O,S); (D-3)
K, =-=8,(0,0,s);
PocC
K, =-——B.(0,0,s).
PocC

Note: the second term of the Hamiltonian is due to solenoid fields (H) which have been
treated in Appendix B. Hy, is given by Eq. (C.9) in Appendix C. The Hamiltonian (D.1)
then leads to the canonical equations of motion:
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d

ds xz Dz + Y
d 2
— Dz :sz:v_[Kx"i_g]x"’_Ny
ds

+[py —xH|H — [zF, + yF] 6(s — sp);
d
% Yy :py_xH;

(D.4)

d -

Y

%py =p.K, — [K, —gly + Nx

—[pe + yH|H — [yF> + 2F) 6(s — s;p);

d 1
. —[zK, +yK,| + ’y_gpz;
d 1 eVi(s), 2m

h— cos ¢grFp.

s TRTE 'L
Note that the linear transverse betatron oscillations and the longitudinal motion
(Egs. (D.4)) are coupled by the terms

p.K,, p.K, and —[zK,+yK, (D.5)
respectively, i.e. depending on the curvature of the orbit in the bending magnets.

In order to simplify these equations we introduce dispersion

D(s) = D(s+ L).
New variables &, p,, ¥, Dy, Z, D. can be introduced which satisfy the dispersion relation:

T =x—p,Dy;

Dz = Do — D2Do;

(D.7)
g =Y _pzD?);
ﬁy = Py _pzD4-
This replacement
(SU, DPzy Y, py7 Z, p2> - (ii‘? ﬁ:va ga ﬁyu 27 ﬁ2> (D8>
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can be achieved using the generating function [14-17]:
By (2, Y, 2, Dy Dy, D2) = Dalr — P2D1] + paaDo
+Pyly — P=Ds] + p.yDs (D.9)
—5[D1D + D3 Dalp2 + .2

with the result that:

or,
T = = — ~2D :
Y T, T
OF: N -
Pz = 8—2 = Pu + P.Do;
T
- OF: -
y = a—f = y—p.Ds;
Py
or, - .
Py = 5~ = Pyt DDy
Y 8y y 4
. oF - -
z = 8]52 = 24 [—p.D1 + 2Dy — Py D3 + yDy]
—[D1Dy + D3Dy]p.
(D.10)
=z+ {_ﬁle + ['T - Dlﬁz]DQ
_ﬁyD?) + [y - D3ﬁz]D4}
=2+ [—p.D1 + 2Dy — pyDs + §Dy]
=2+ [—psD1 + 2Dy — pyDs + yDy;
R _
pZ - az - pZ
and O
~ 2
= — D.11
H H+ 95 ( )
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In matrix form Egs. (D.10) read:

i =Kz 7= K%
with
T
D
i |7
Py
z
D
and
1 0 0 0
0 1 0 0
0 0 1 0
Ks) =49 o o 1
Dy, —Dy Dy —Dj;
0 0 0 0
1 0 0 0
0 1 0 0
v | o 0o 1 o0
K™ (s) = o 0 0 1
—Dy Dy —Dy Djs
0 0 0 0

Note that K(s) is symplectic:
E'(s)] K(s) =J

(with J given by Eq. (A.6)).

o= O OO o

o= OO OO

(D.12)

(D.13)

(D.14)

(D.15)

Taking into account the defining equations for the dispersion in the general case of

arbitrary velocity [y:

d

—_— D1 = DQ + HD37

ds

d 2

- Dy, = +[Dy— HD\]H — [K2 + g|D; + NDj
—[F1D; + FDs] 6(s — sp) + Ky

d

ds

d 2

ds Dy = —[Ds+ HD3]H + ND; — [Ky —9)Ds

—[F1D3 + FDl] (5(5 — SIP) + Ky,

(D.16)
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the new Hamiltonian reads:

= & {Ipe + GHP + [, — #H]’)

1 - . .

+5 {[KG + 913 + [K) — gl0°} — N&j
1 -

—5[(KoD1 + K, D) — 1/%]p: (D.17)
1 2meV 1 .. . - - - 2

—ﬁ—ghffo COS PRp X 5 {2+ [poD1 — Dy + pyDs — yD4]}

1. 1.
+ §x2F1 + §y2F2 + Fzy| d(s — srp).
Note that the dispersion vector D is the periodic solution of the linearised equations
of orbital motion when the cavities are excluded and p, = 1.
The coupling terms (see (D.5)) arising from the orbit curvature disappear. Instead,
there is a term

1 . . . . . 1 2weV
3 {2+ [poD1 — EDy + P, D3 — D4} —thf COS PRF
0 0

which disappears when all four dispersion terms (D;, D2, D3, D,) are equal to zero at
the location of the cavities.
For further analysis we split the Hamiltonian (D.17) into three parts:

H=H+H +H (D.18)
with ]
H = 5 {[p- +9H]* + [p, — TH]?}

—_

+5 { K2+ 9)7* + [K] — g]7° — Nig}

[\]

1 N
_5[(KxD1 + K,D3) — 1/73)p>

1, 2meV 1,
——h—— cos — z%
2L E, YRy

(D.19)

~ 1 2meV
HY = _@hfﬁo COS P RF X
0

1. - - .

5 [prl - $D2 + pyD3 - yD4]

X {22 + [pa Dy — £Da + py D3 — §D4]} ;
~ 1 1
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1 " )
where we have gathered in H all terms of the cavities producing synchro-betatron cou-

pling and in 7:{2 the terms resulting from the beam-beam interaction.
In terms of the variables , p., ¥, Py, Z, Pz, Eq. (D.4) then takes the form:

D7 _A0F 4 A0F 4 A7 (D.20)
s
with . Vo
A0; — M 0 g, O ;
- T o7 " Y10yn
- oM O*H!
Avz — g 4o - g . (D.21)
- o7 " 'Oy,
/2 2772
407 = g7 o ae - 5, O
n o) " Oy 0yy,
In detail one obtains from Egs. (D.19):
8)
A(O)(S) _ Alal(s) (%w (D.22)
Ooys  Abo(s)
1 eVi(s), 2m
00 = GG s
DD —DD Dy,D —DsD —D 04
X 0 0 0 0 0 O
—Dy D, —Dy D3 0 O
0O 0 0 000 (D-23)
—F, 0 —=F 0 0 0
0O 0 0 000
2 _
A7) “F 0 -F o0 o |25
0O 0 0 000
0O 0 0 000
with
0 1 H 0
() —(K;+g+H?) 0 N H |
Arals) = g 0 0 Nk (D.24)
N -H —(K}—-g+H?) 0
) 0 ~[(Kz D1 + K, D3) — 1/73]
AS)(s) = 1 eV(s), 2m (D.25)
2x2 7 h hf COS PRF 0

and D defined by Eq. (D.6).

Here the matrix AY results from the synchro- betatron coupling induced by the
cavities and A® results from the beam-beam kick.
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The tune shifts induced by AV and A® can be obtained by determining the tunes

with and without 7' and " or by perturbative methods as described in Ref. [18,19]. In a
similar way one can calculate the distortion of the dispersion induced by the beam-beam
kick.

The Eigenvalue Spectrum of the Orbital Revolution Matrix
The solution of the original Hamiltonian (D.1) can be written as:

7(s) = M(s, so)Z(s0) (D.26)

which defines the linear transfer matrix M (s, sg) corresponding to the variables
(T, Y, 25 Pas Py, D)

Note that M(s, sg) is symplectic [18]:

M7 (s,80) M(s,s0) = J. (D.27)
Thus the (normalised) eigenvectors of the revolution matrix :
M(so+ L ,0) T(so) = e 2™k (s0);
(D.28)

Q- =—Qr (k=1, II, III)

obey the orthogonality relations (see Eq. (A.4)), where we have assumed that the stability
condition :

Qr real number (D.29)
is satisfied.
Putting .
To(s) = o(s)e " 2m@k(s/L) (D.30)
we obtain from (D.28):
k(s + L) = 0x(s) (D.31)

(Floquet theorem). Using this result, action-angle variables for coupled motion can be
introduced as described in Ref. [18].
The introduction of the dispersion has been accomplished by the matrix K (see
Eq. (D.12)):
I = K# 7= K'Z (D.32)

Using the transfer matrix M (s, so) we can write:
Z(s) = K(s) M(s, so) K~Y(s0) Z(s0), (D.33)

showing that the transfer matrix M(s, so) can be represented as [20]:

M(s, s9) = K(s) M(s, so) K *(s0). (D.34)

In particular one has:

M(so+ L, s0) = K(so) M(so+ L, s0) K (s0). (D.35)
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For the eigenvectors one gets:

Oi(s0) = K(so) U (s0) (D.36)

since

M(So + L, s0) K(s0) Uk(s0) = K(s0) M(so+ L, so) K_l(So)K(So) Ur(50)
= K (s0) M(so+ L, s0) Ux(s0) (D.37)

= e 27Qk K (50) 3, (s0).
Note that the eigenvalues and thus the @) - values remain unchanged:

Qr = Q. (D.38)

3 The orthogonality relations for the new eigenvectors oy, are still valid. Furthermore,
M(s, so) is symplectic as it is obtained by a similarity transformation of M with K.

Decoupled Motion; Twiss Parameters 3
In the case of vanishing dispersion within the cavities the revolution matrix M (sq+
L, sg) has the simple block-diagonal form:

)
M (so+ L, 50) = M(4X4)(80 + L, s0) " Orax2) (D.39)
O(2xa) M5, 5(s0 + L, s0)

where M ((i)x 5 (so+L, sg) corresponds to the (transverse) betatron motion and M ((ZQ)XQ) (so+

L, sg) to the (longitudinal) synchrotron oscillations.

Furthermore, the 2-dimensional revolution matrix M ((ZQ)XQ) (so+L, so) which is defined
by the equations of synchrotron motion :

d . .
o2 = e Do+ Ky Dy) = 1/%] - P ;
(D.40)
d 1 2 eV (sp) .
_ . — . - —_ coS -z
as 7 T VL TR, (YR
(see Eq. (D.25)) can be represented in the form:
(2) [ cos2mQ, + a(sg) - sin27Q), B.(s0) - sin 27w Q)
M(2X2)(SO + L, 50) = ( —7.(80) - sin 27Q, cos 2mQ, + a,(sg) - sin 27Q,
(D.41)
with
By, =a’+1. (D.42)
From these equations one sees that the eigenvectors 5k(so) can be written as:
B e
i —( 3 ) k=1, 1D);
)
= O > _ [ ta 1 B.(s0) —it),(50)
— . S — . . . 2\°0/
v < s ) ’ < t2 ) \/28=(s0) ( —az(so) +i] )€
(D.43)
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In the absence of skew quadrupoles (N = 0) and solenoids (H = 0) (the coupling
term Fzy vanishes in (D.19)), the betatron oscillations are decoupled, leading to:

M(x) (50 +L, 30) Oax2
M((Z)M)(So + L,sy) = ( (QXZ)O ) (2x2) I ;
=(2x2) —(2x2)(50 + L, s0)
() [ o8 2mQy + vy SIn 2T Q) B sin 270, .
M(2x2)<80 +L,so) = ( —Yw SIN 270, cos 2mQ, + aupy sin 2@, )’
ﬁw'ww:ai}_’_l; (wz:c,y)
(D.44)
As a result, the vectors ;7 and v;; then take a form similar to 0777 :
e ) . - 05 ) .
s (E): ar - (B),
(D.45)

wo= (i) - o (i, ) -l

(w=z, vy).
It is easy to generalise this treatment to the coupled case, see Ref. [18].
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List of symbols

The symbols used in this report are listed with a brief description of the quantity

they represent.

Greek symbols Page
« crossing plane angle 3
@y Biy Vi Twiss parameters 38
0o relativistic 3 30
Yo Lorentz factor 1
10) half crossing angle between opposite bunches 3
P arbitrary angle parameter 17
T artificial integration parameter 25
0 arbitrary coupling angle 1
0, coupling angle with respect to the principal axes 16
P beam size matrix 1
© substitutes S/ cos ¢ 10
PRF phase angle of the cavity 30
Ok eigenphases of coupled motion 3
Latin symbols Page
A transformation matrix (lab. = acc.) for the coordinates 4
A transfer matrix including coupled beam-beam force and the cavity 35
B transformation matrix (lab. = acc.) for the momenta 4
B magnetic field vector 30
c transfer matrix for solenoid kick 23
D orbit dispersion function 31
D(S) transformation from IP to CP 11
D, Dgpy differential operators 21, 22
E energy for test particle or bunch 4
Ey, Es horizontal, vertical principal axis of coupled motion 3
By, E, horizontal, vertical amplitude of the particle motion 16
E,, E, horizontal, vertical coupling parameter 16
T, linear beam-beam matrix 29
f linear beam-beam focal length 28
F inverse linear beam-beam focal length including coupling 29
£ generating function 8
Fy, Fy, F; horizontal, vertical, longitudinal synchro-beam force 11
g quadrupole strength 30
G, Gy crossterm coupling parameters 16
h harmonic number 30
h(pz, Dy, P2) Hamiltonian in accelerator coordinates 4
H solenoid field strength 19
H, Hyp Hamiltonian 10
I unity matrix 24
Ji invariants of coupled motion 3
k mode number 2
K., K, horizontal, vertical curvatures 30
K transfer matrix including beam-beam and dispersion 33
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Latin symbols,

continued

Pl bl e 18] BIERBI 8 §1 By B & <

b

circumference of accelerator

Lorentz boost matrix

coupled Lorentz boost matrix

Lorentz transformation

6D transfer matrix

skew quadrupole strength

number of particles in a bunch

number of particles in a slice

VIB: = B +4(E,G.)’

zero matrix

momentum of the bunch

momentum of the test particle

betatron tune

betatron tune of eigenmodes

crossing angle similarity transformation
classical particle radius

longitudinal position

distance between test particle and strong bunch
anti-symmetric matrix of symplectic formulation

linear beam-beam matrix

uncoupled electric potential

coupled electric potential

eigenvalues of coupled motion

RF voltage of the cavity

coordinates of the test particle
coordinates of the coupled test particle
coordinates of the tilted test particles

coordinates of the transformed test particle (lab. = acc.)

coordinates of the Lorentz boosted test particle

tilted coordinates of the test particle in the crossing plane
coordinates of the test particle after synchro-beam mapping
coordinates of the coupled test particle after synchro-beam mapping

coordinates of the bunch
coordinates of the coupled bunch

coordinates of the tilted bunch
coordinates of the slice of the bunch

coordinates of the bunch in the averaged plane

— O = O W R W

— N
O Ut

LW W
(@]

W = = Ot Ut Ot =
—_

oo
ot

—_
(=}
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