
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN – AB DEPARTMENT

AB Note-2004-069 (ABP)

SODD : Another MAD-X module

E. T. d’Amico

Abstract

The new madx command sodd implements the functionalities of the stand-alone pro-
gram SODD (Second Order Detuning and Distortion function) written by F. Schmidt. It
provides an easy interface to other MAD-X modules by automatically computing the re-
quired input parameters from the last TWISS command. The results are not only stored into
files as it is done in the stand alone program but also inside internal MAD-X tables for the
use in subsequent MAD-X commands. This note describes the coding implementation and
documents the use of the command sodd.

Geneva, Switzerland

27 September 2004

1 Introduction

The stand-alone program SODD [1] has proved to be extremely useful. It calculates the detuning and
distortion functions according to the analytical formulae of [2] extended to the second order by Frank
Schmidt [3]. It consists of three parts:
Subroutine detune calculates the detuning terms in first and second order in the strength of the multi-
poles.
Subroutine distort1 calculates the distortion function and the Hamiltonian terms in first order in the
strength of the multipoles.
Subroutine distort2 calculates the distortion function and Hamiltonian terms in second order in the
strength of all combinations of the multipoles.
The interface with MAD-X was done through ASCII files which was not very convenient especially
when the results were to be used by other MAD-X modules. Thus it was decided to create a new MAD-
X module called sodd which will include inside MAD-X all the stand-alone functionalities. The input
parameters become attributes of the sodd command and the data about the multipoles can be generated
automatically taking advantage of the information provided by the previous MAD-X command TWISS.
Actually an internal call to the program sixtrack is executed to build up the input file fc.34. The re-
sult files remain the same, albeit with more meaningful names and with an added header to label each
column. Corresponding internal MAD-X tables are generated with the same names but without the first
header line. The result data (all in double precision) can be accessed in a Fortran program by calls to
the integer function double from table as in the following example :

k = double_from_table(‘‘detune_1_end ‘‘, ‘‘mpor ‘‘, n, multipole_order)

where the value at the crossing of the nth row and the column with name mpor in the table named
detune 1 end is transferred into the variable multipole order. The integer k is 0 for no error, -1 if the
table does not exist, -2 if the column does not exist, -3 if the row does not exist. Reminder: each
character string should end with a blank character.
The result data can also be accessed in a C program by calls to the function double from table as
in the following example :

int k,n;
double multipole_order;
....
k = double_from_table(‘‘detune_1_end‘‘, ‘‘mpor‘‘, &n,&multipole_order);
....

On return, k has the same value as in the Fortran example.
The main points about the code implementation are given in the next section. Details about the input
attributes and the description of the result files and internal tables can be found in the following sections
Input and Results.

2

2 Code implementation

MAD-X offers a very large number of functionalities which are provided by software modules written
partly in C and partly in Fortran. The modular structure is very flexible and an extended set of utilities
facilitates the insertion of new modules. The module sodd is the first case study for such an insertion
and it seems worthwhile to describe how the actual code implementation has been carried out. Adding a
new module should start by informing MAD-X about the new command name and its related attributes.
These are readily inserted in the file madxdict.h, its structure being self-explanatory. The following
code has been added for sodd :

"sodd: control none 0 0 "
"detune = [l, false, true], "
"distort1 = [l, false, true], "
"distort2 = [l, false, true], "
"start_stop = [r, {0.0,0.0}], "
"noprint = [l, false, true], "
"nosixtrack = [l, false, true], "
"print_at_end = [l, false, true], "
"print_all = [l, false, true], "
"multipole_order_range = [i,{1,2}]; "
" "

Next one needs to provide the required link in the main C program madxn.c by adding the line con-
taining the new command name

else if (strcmp(toks[k], "sodd") == 0) exec_sodd(cmd);

to the routine control which evaluates the input stream and looks for known command names. It
remains to write the new routine exec sodd (also part of the main C program madxn.c) which can
be done by referring to similar routines i.e. exec plot. Attributes can be read either inside a C routine
by using C-structures as in the following example for the logical attribute nosixtrack:

struct name_list* nl_sodd;
int pos,nosixtrack;

....
if (this_cmd != NULL && this_cmd->clone != NULL)

{
nl_sodd = this_cmd->clone->par_names;

}

pos = name_list_pos("nosixtrack", nl_sodd);
nosixtrack = nl_sodd->inform[pos];

....

or inside a Fortran program by calls to the MAD-X routine comm para an example of which is shown
to acquire the attribute detune :

call comm_para(’detune ’, nint, ndble, k, int_arr, d_arr, char_a, char_l)

Since the program sodd was already written in Fortran, the most natural choice for the MAD-X module
integration was to transform it in a Fortran routine named soddin. The read(5,*) commands where
replaced by calls to comm para. Of course the instruction

soddin_(&ierr);

3

had to be added to the C routine exec sodd. Finally the declaration file madxd.h had to be updated
with the following lines :

....
extern void soddin_(int*);
....
void exec_sodd(struct in_cmd*);
....

All internal tables used within the module Sodd have to be defined in the declaration file madxd.h by
adding the following lines :

....
struct table* sodd_table_70; /* sodd output table detune_1_end */
struct table* sodd_table_71; /* sodd output table detune_1_all */
struct table* sodd_table_72; /* sodd output table detune_2_end */
struct table* sodd_table_73; /* sodd output table detune_2_all */
struct table* sodd_table_74; /* sodd output table distort_1_F_end */
struct table* sodd_table_75; /* sodd output table distort_1_H_end */
struct table* sodd_table_76; /* sodd output table distort_1_F_all */
struct table* sodd_table_77; /* sodd output table distort_1_H_all */
struct table* sodd_table_78; /* sodd output table distort_2_F_end */
struct table* sodd_table_79; /* sodd output table distort_2_F_all */
....

and the column names have to be defined in the declaration file madxl.h, to which the following lines
have been added :

....
int sodd_detune_5_types[] =
{

1, 1, 2, 1, 1
};

char* sodd_detune_5_cols[] =
{

"mpor", "plane/mpor2", "detune", "H_inv_order", "V_inv_order",
" " /* blank terminates */
};

int sodd_distort1_8_types[] =
{

2, 2, 2, 2, 2, 2, 2, 2
};

char* sodd_distort1_8_cols[] =
{

"mpor", "cos", "sin", "amp", "j", "k", "l", "m",
" " /* blank terminates */
};

int sodd_distort1_11_types[] =

4

{
1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1

};

char* sodd_distort1_11_cols[] =
{

"mpor", "app", "res", "pos", "cos", "sin", "amp", "j", "k", "l", "m",
" " /* blank terminates */
};

int sodd_distort2_9_types[] =
{

1, 1, 2, 2, 2, 1, 1, 1, 1
};

char* sodd_distort2_9_cols[] =
{

"mpor", "mpor2", "cos", "sin", "amp", "j", "k", "l", "m",
" " /* blank terminates */
};
....

The actual creation of the tables is realised by the following code added to the routine exec sodd
inside the main C program madxn.c :

sodd_table_70 = make_table("detune_1_end", "sodd_detune_5",
sodd_detune_5_cols, sodd_detune_5_types, 2);

sodd_table_70->dynamic = 1;
add_to_table_list(sodd_table_70, table_register);
sodd_table_71 = make_table("detune_1_all", "sodd_detune_5",

sodd_detune_5_cols, sodd_detune_5_types, 2);
sodd_table_71->dynamic = 1;
add_to_table_list(sodd_table_71, table_register);
sodd_table_72 = make_table("detune_2_end", "sodd_detune_5",

sodd_detune_5_cols, sodd_detune_5_types, 2);
sodd_table_72->dynamic = 1;
add_to_table_list(sodd_table_72, table_register);
sodd_table_73 = make_table("detune_2_all", "sodd_detune_5",

sodd_detune_5_cols, sodd_detune_5_types, 2);
sodd_table_73->dynamic = 1;
add_to_table_list(sodd_table_73, table_register);
sodd_table_74 = make_table("distort_1_F_end", "sodd_distort1_8",

sodd_distort1_8_cols, sodd_distort1_8_types, 2);
sodd_table_74->dynamic = 1;
add_to_table_list(sodd_table_74, table_register);
sodd_table_75 = make_table("distort_1_H_end", "sodd_distort1_8",

sodd_distort1_8_cols, sodd_distort1_8_types, 2);
sodd_table_75->dynamic = 1;
add_to_table_list(sodd_table_75, table_register);
sodd_table_76 = make_table("distort_1_F_all", "sodd_distort1_11",

sodd_distort1_11_cols, sodd_distort1_11_types, 2);

5

sodd_table_76->dynamic = 1;
add_to_table_list(sodd_table_76, table_register);
sodd_table_77 = make_table("distort_1_H_all", "sodd_distort1_11",

sodd_distort1_11_cols, sodd_distort1_11_types, 2);
sodd_table_77->dynamic = 1;
add_to_table_list(sodd_table_77, table_register);
sodd_table_78 = make_table("distort_2_F_end", "sodd_distort2_9",

sodd_distort2_9_cols, sodd_distort2_9_types, 2);
sodd_table_78->dynamic = 1;
add_to_table_list(sodd_table_78, table_register);
sodd_table_79 = make_table("distort_2_H_end", "sodd_distort2_9",

sodd_distort2_9_cols, sodd_distort2_9_types, 2);
sodd_table_79->dynamic = 1;
add_to_table_list(sodd_table_79, table_register);

Filling the tables is done inside the Fortran routine soddinwith calls to the routine double to table
as in the following example :

call double_to_table(table_name,name_5(k),double_to_write(k))

where table name is the name of the table as defined in the first argument of the routine make table,
name 5(k) is the column name and double to write(k) is the double precision value to be
stored.

3 Input data

The attributes which can be inserted in the sodd command are :
detune : logical, the default value being false. If true, the detune subroutine is executed.
distort1 : logical, the default value being false. If true, the distort1 subroutine is executed.
distort2 : logical, the default value being false. If true, the distort2 subroutine is executed.
start stop : position range given as two real numbers separated by a comma. Only the multipoles located
within this range will be considered in all calculations. Unit is m.
multipole order range : specifies the low and high limit of orders to be studied. Erect and skew elements
are denoted with positive and negative values respectively. The two integer values should be separated
by a comma.
noprint : logical, the default value being false. If true, no file or internal table will be created to keep
the results. In this case the attributes print all or print at end have no effect.
print all : logical, the default value being false. If true, the files and internal tables containing results at
each multipole will be generated.
print at end : logical, the default value being false. If true, the files and internal tables containing results
at the end of the position range will be generated.
nosixtrack : logical, the default value being false. If true, the input file fc.34 called fort.34 in [1] will
not be generated internally by invoking the conversion routine of sixtrack and the user must provide it
before the execution of the sodd command.

4 Results

4.1 attribute detune

If the attribute print at end has been set, the following two files (and the corresponding internal tables)
are created at the end of the position range:

6

detune 1 end containing five columns :
1) multipole order
2) (hor., ver. plane => (1/2)
3) hor. or ver. detuning
4) order of horizontal invariant
5) order of vertical invariant.
The corresponding column names in the associated internal table are :
1) mpor
2) plane/mpor2
3) detune
4) H inv order
5) V inv order

detune 2 end containing five columns :
1) first multipole order
2) second multipole order
3) horizontal detuning
4) order of horizontal invariant
5)order of vertical invariant.
The corresponding column names in the associated internal table are the same as for the internal table
detune 1 end.

If the attribute print all has been set, the following two files (and the corresponding internal tables)
are created at each multipole in the position range:

detune 1 all containing five columns which are the same as for the internal table detune 1 end.
The corresponding column names in the associated internal table are the same as for the internal table
detune 1 end.

detune 2 all containing five columns which are the same as for the internal table detune 2 end.
The corresponding column names in the associated internal table are the same as for the internal table
detune 1 end.

4.2 attribute distort1

If the attribute print at end has been set, the following two files (and the corresponding internal tables)
are created at the end of the position range:

distort 1 F end containing eight columns :
1) multipole order
2) cosine part of distortion
3) sine part of distortion
4) amplitude of distortion
5) j
6) k
7) l
8) m

7

The corresponding column names in the associated internal table are :
1) mpor
2) cos
3) sin
4) amp
5) j
6) k
7) l
8) m

distort 1 H end containing eight columns :
1) multipole order
2) cosine part of Hamiltonian
3) sine part of Hamiltonian
4) amplitude of Hamiltonian
5) j
6) k
7) l
8) m
The corresponding column names in the associated internal table are the same as for the internal table
distort 1 F end.

If the attribute print all has been set, the following two files (and the corresponding internal tables)
are created at each multipole in the position range:

distort 1 F all containing eleven columns :
1) multipole order
2) appearance number in position range
3) number of resonance
4) position
5)cosine part of distortion
6) sine part of distortion
7) amplitude of distortion
8) j
9) k
10) l
11) m

The corresponding column names in the associated internal table are :
1) mpor
2) app
3) res
4) pos
5) cos
6) sin
7) amp
8) j
9) k
10) l
11) m

8

distort 1 H all containing eleven columns :
1) multipole order
2) appearance number in position range
3) number of resonance
4) position
5) cosine part of Hamiltonian
6) sine part of Hamiltonian
7) amplitude of Hamiltonian
8) j
9) k
10) l
11) m
The corresponding column names in the associated internal table are the same as for the internal table
distort 1 F all.

4.3 attribute distort2

Only the attribute print at end is taken in account. If present, the following two files (and the corre-
sponding internal tables) are created at the end of the position range:

distort 2 F end containing nine columns :
1) first multipole order
2) second multipole order
3) cosine part of distortion
4) sine part of distortion
5) amplitude of distortion
6) j
7) k
8) l
9) m

The corresponding column names in the associated internal table are :
1) mpor
2) mpor2
3) cos
4) sin
5) amp
6) j
7) k
8) l
9) m

9

distort 2 H end containing nine columns :
1) first multipole order
2) second multipole order
3) cosine part of Hamiltonian
4) sine part of Hamiltonian
5) amplitude of Hamiltonian
6) j
7) k
8) l
9) m
The corresponding column names in the associated internal table are the same as for the internal table
distort 2 F end.

5 Acknowledgments

I would like to thank O. Bruning and F. Schmidt for their support and encouragement to write this note.
Their comments have greatly improved it.

References

[1] F. Schmidt, “SODD: A Computer Code to calculate Detuning and Distortion Function Terms in
First and Second Order”, CERN SL/Note 99-099 (AP), Geneva (1999).

[2] J. Bengtsson and J. Irwin, ”Analytical Calculation of Smear and Tune Shift ”, SSC-232 (1990)

[3] F. Schmidt, “SODD: A Physics Guide”, Beam Physics Note 56, Geneva (2001)

10

