

LEP Energy Calibration

April 24th, 2001 LEP W Physics Jamboree

Eric Torrence Enrico Fermi Institute University of Chicago

for the LEP Energy Working Group

- Magnetic Extrapolation
- Energy Loss ($\overline{Q_S}$ vs. V_{RF})
- Spectrometer
- Radiative Returns

Kinematic Fits

- Improved resolution on M_W
- Reduced detector uncertainties
- Need to know Beam Energy

⇒ Scale Error common to all experiments

LEP II Combined

Expected Statistical Error: $\delta M_W \sim 20 MeV$

Beam Energy Goal:

 $\delta E_{Beam} \sim 10 MeV$

 \Rightarrow Precision of $\delta E_{\text{beam}} / E_{\text{beam}} < 1 \times 10^{-4}$

Resonant Depolarization

High Precision technique used extensively at LEP I

Spin Precession Frequency: $v_s = \frac{g_e - 2}{2m_e c^2} \langle E_{Beam} \rangle$

Intrinsic Resolution: $\delta E_{Beam} \approx 200 keV$

 \Rightarrow Only works up to $E_{Beam} \sim 60 \text{ GeV}$

Step 2: Cross Check Linearity with Flux Loop

Eric Torrence

Systematic	δE _{beam} (MeV)	
Uncertainty	1998	2000
NMR - FL Comparison	16	16
NMR Calibration	9	13
BFS Calibration	-	13
IP Specific Corrections	4	5
Other Errors	8	5
Total	20	25

⇒ Preliminary 2000 Results

 $\delta M_W = 20 MeV \ (2000 \ data)$

Energy Scale Cross-Checks

- Energy Loss (Q_s vs V_{RF})
- LEP Spectrometer
- Radiative Return Analysis

⇒ Verify LEP II Energy Scale

Reduce Uncertainty if Possible

$$\mathbf{Q}_{s}^{2} = \left(\frac{\alpha_{c} \mathbf{h}}{2\pi \mathbf{E}}\right) \sqrt{e^{2} \mathbf{V}_{\mathsf{RF}}^{2} - \mathbf{U}_{0}^{2}}$$

Q_s depends on Beam Energy, RF Voltage, and Energy Loss

Measure Q_s vs V_{RF}

Use low energy points for calibration Use high energy points to check extrapolation

Q_s Measurements

1998 - 1999 Results

Inner error bars indicate statistical component

⇒ Good agreement with Flux Loop

2000 Status

- Auxiliary measurements made of model parameters
- Three additional energy measurements performed

Inline Spectrometer Concept

- Use dipole which ramps with LEP
- $\oint Bdl$ from Local NMR and precision Field Map
- BPM Triplets measure bend angle Θ

$$\Theta = 4.8 m Rad \implies \delta x_{BPM} \sim 1 \mu m$$

Relative Energy Measurement

- Calibrate Spectrometer using RDP
- Ramp immediately to Physics Energy
- Direct Measurement of E_{Beam} in ratio

Eric Torrence

Nearly 3 GeV lost per revolution at $E_b = 100 \text{ GeV}$

RF Model

- Constrained with experimental data
- Dedicated data taken in 2000 to measure IP phase errors
- Single-beam spectrometer data particularly sensitive

⇒ Correction of 20 - 50 MeV at IP3

Possible Biases

- Ambient Tunnel Fields
- BPM Gain Calibration
- Electronic Cross-Talk
- Transverse Beam Size Dependence
- Bunch Length Dependence
- Synchrotron Radiation Dependence

Most effects insignificant, remaining corrected

- Additional fields of ~200 mGauss measured
- Expect -2×10^{-4} effect with small optics dependence

Tunnel Field Map

Monitored continuously and corrected

Error Bars indicate RMS of measurements

⇒ No disagreement with Flux Loop Significant systematics still to be understood...

Radiative Returns

NMR - Flux Loop Extrapolation

- Good stability seen during LEP II operations
- Precision limited at ~ 15 MeV

Q_s vs V_{RF}

- Direct measurements to reduce/understand systematics
- Results consistent with Flux loop extrapolation
- Work continues to refine model

LEP Spectrometer

- Major effort in 2000 to understand systematics
- Results consistent with Flux loop extrapolation
- Significant work remains...

Radiative Returns

- Significant differences observed
- LEP-wide collaboration ongoing
- Probably more difficult than M_W

→ Work Continues...

Special thanks to CERN/SL division!