Tests of the Standard Model and constraints on new physics from Fermion-pair production at LEP2

Giovanni Abbiendi

INFN – Sezione di Bologna

International Conference *New Trends in high-energy physics*, Yalta, Crimea, Ukraine, September 22-29, 2001

Outline

 $f = e, \mu, \tau, q$ (inclusive / b / c) $\sqrt{s} = 130 - 209 \text{ GeV}$

- Features of fermion-pair production above the Z peak
- Measurements of σ , A_{FB} , R_q , $d\sigma/dcos\theta$
- Tests of the Standard Model (SM)
- Indirect searches for physics beyond SM
 - virtual contributions interfering with SM diagrams
 - sensitive to energies higher than \sqrt{s}

Fermion pair production in SM

Z radiative return

Effective center of mass energy $\sqrt{s'}$

f

e-

e+

 Z/γ

Photon radiation very important at LEP2 Radiative return peaks at $\sqrt{s'} \sim m_Z$

Radiative events have usually acollinear fermion pairs and large missing momentum along the beam pipe

(Non-radiative events have back-to-back fermion pairs)

s' measured in different ways by experiments

Signal Definition

 $\sqrt{s'/s} \ge 0.1$ Inclusive sample

Non-radiative sample $\sqrt{s'/s} \ge 0.85$

More relevant to look for new physics

Two preferred definitions of s' :

• s-channel propagator mass (with IFSR subtracted) L3, OPAL

• bare invariant mass $f\bar{f}$ (with IFSR included) ALEPH, DELPHI

Complications : Initial-Final-State Interference Extra Pairs from 4-fermion procs

 e^+

200

√s' /GeV

S

150

150

200

√s' /GeV

Data Samples / current precision

Year	Nominal Energy GeV	Actual Energy GeV	Luminosity pb ⁻¹ /exp
1995	130	130.2	~ 3
	136	136.2	~ 3
	133*	133.2	~ 6
1996	161	161.3	~ 10
	172	172.1	~ 10
	167*	166.6	~ 20
1997	130	130.2	~ 2
	136	136.2	~ 2
	183	182.7	~ 50
1998	189	188.6	~ 170
1999	192	191.6	~ 30
	196	195.5	~ 80
	200	199.5	~ 80
	202	201.6	~ 40
2000	205	204.9	~ 80
	207	206.7	~ 140

Theoretical Uncertainties (from *LEP2 MC Workshop*) $qq: 0.26\% \mu\mu, \tau\tau: 0.4\%$ ee: 2.0% (barrel), 0.5% (endcap)

Experimental errors								
Non-radiative data at 189 GeV)								
	(stat)	(syst)						
pp	2 %	1-2 %						
ıμ	5 %	2 %						
ττ	5-7 %	2-3 %						
ee	1.5-2 %	0.5-1 %						

Combining LEP2 data: Statistics increase $\approx 4 \times 3$ times $\rightarrow \text{ errors} / \sqrt{12}$ Systematics mostly uncorrelated between exps $\rightarrow \text{ errors} / 2$

Total Experimental precision on deviations from SM averaged over

all energies:

 $qq \approx 1 \% \ \mu\mu, \tau\tau \approx 2 \% \ ee \approx 0.5 \%$

Adequate except for electron pairs

LEP combinations - (all preliminary) -

- Non-radiative data $\sqrt{s'/s} \ge 0.85$ (e⁺e⁻ not yet combined)
- Cross sections: hadronic, $\mu^+\mu^-$, $\tau^+\tau^-$
- Forward-Backward asymmetries: $\mu^+\mu^-$, $\tau^+\tau^-$
- Differential cross sections $\frac{d\sigma}{d\cos\theta}$ for $\mu^+\mu^-$, $\tau^+\tau^-$
- Heavy Flavours: $R_b, A_{FB}^b, R_c, A_{FB}^c$

 \rightarrow Covariance matrix built from errors split in 5 classes to account for different correlations (within/between exps)

 \rightarrow Corrections of each exp's data to a common signal definition

 $\rightarrow \chi^2$ minimisation procedure

Combined errors dominated by statistics and uncorrelated systematics Good Agreement between DATA and Standard Model

Set limits on NEW Physics !

Cross-sections and Forward-Backward asymmetries

(hadronic σ 1.8 s.d. excess averaged over all energies)

Differential cross-sections $\frac{d\sigma}{d\cos\theta}$

Heavy Flavours

Bhabha scattering

S-matrix fit

hadronic $\gamma - Z$ interference left free (usually S.M. prediction is used for lineshape fits)

S-matrix fit

Fit with/without lepton universality All LEP1 + LEP2 data included

Parameter	Treatment of C	harged Leptons	Standard
	non-universality	universality	Model
$m_{\rm Z}$ [MeV]	91 188.8±3.6	91188.4±3.6	
$\Gamma_{\rm Z}$ [MeV]	2502.7 ± 4.1	2502.5 ± 4.1	2492.8
$r_{ m had}^{ m tot}$	$2.9854{\pm}0.0092$	$2.9849 {\pm} 0.0092$	2.960
$r_{ m e}^{ m tot}$	0.14315 ± 0.00075		
$r_{\mu}^{\rm tot}$	0.14281 ± 0.00079		
$r_{ au}^{ ext{fot}}$	0.14367 ± 0.00102	—	
$r_\ell^{ m tot}$		$0.14318 {\pm} 0.00059$	0.14245
$j_{ m had}^{ m tot}$	0.29 ± 0.10	$0.30 {\pm} 0.10$	0.21
$j_{ m e}^{ m tot}$	-0.034 ± 0.043	—	
j_{μ}^{tot}	-0.012 ± 0.025	—	
j_{τ}^{tot}	$0.043 {\pm} 0.029$	—	
j_{ℓ}^{tot}		$0.005 {\pm} 0.018$	0.004
$r_{ m e}^{ m fb}$	0.00176 ± 0.00111		
r_{μ}^{fb}	0.00329 ± 0.00064		
$r_{ au}^{ ext{fb}}$	0.00448 ± 0.00092	—	
r_{ℓ}^{fb}		0.00330 ± 0.00047	0.00263
$j_{ m e}^{ m fb}$	$0.685 {\pm} 0.073$		
$j^{\rm fb}_{\mu}$	$0.795 {\pm} 0.033$		
j_{τ}^{fb}	$0.745 {\pm} 0.041$		
$j_{\ell}^{ m fb}$		$0.760 {\pm} 0.024$	0.799
χ^2/dof	60/66	62/74	

Consistent with LEP1 SM fit (L3): $m_z = 91189.8 \pm 3.1 \text{ MeV}$

Energy Dependence of α_{em}

 μ/τ pairs (non-radiative) dominated by s-channel γ -exchange

 $\sigma \rightarrow \alpha^2_{em} A_{FB} \rightarrow \alpha_{em}$ OPAL (prel., all LEP2 data) $\alpha_{em}^{-1}(190.7 \text{ GeV}) = 126.1^{+2.2}_{-2.1}$ (SM : 127.9) \rightarrow see running from the scale of *Luminosity* meas. where $\alpha_{em} \ge 133$ $\underbrace{\widehat{O}}_{\overline{r}_{\aleph}150}^{155}$ TOPAZ µµ/eeµµ and qq average: ▲ Fits to leptonic data from: **☆DORIS, ⊕PEP, □PETRA, △TRISTAN** 145 140 $\alpha^{-1}(0)$ 135 $\alpha_{SM}^{-1}(Q)$ 130 **OPAL** 125 prelim. 120 115 **OPAL 2-fermion fits: O** 110 average: • 105 25 75 100 125 150 175 200 0 50 O / GeV

G.Abbiendi, "Fermion-pair production at LEP2"

Bhabha scattering at small and
intermediate angles dominated by
t-channel γ –exchange.
L3 results from LEP1 and LEP2 data

 $\alpha_{em}^{-1}(-2.1\,\text{GeV}^2) - \alpha_{em}^{-1}(-6.25\,\text{GeV}^2) = 0.78 \pm 0.26$ $\alpha_{em}^{-1}(-12.25\,\text{GeV}^2) - \alpha_{em}^{-1}(-3434\,\text{GeV}^2) = 3.80 \pm 1.29$

Four-Fermion Contact Interactions

Convenient way to describe any sign of new physics in $ee \rightarrow f\bar{f}$ at scale $\Lambda \gg \sqrt{s}$

	Model	LL	RR	LR	RL	VV	AA	V0	A0
	$\eta_{ m LL}$	±1	0	0	0	±1	±1	±1	0
Chiral structure	$\eta_{ m RR}$	0	± 1	0	0	± 1	± 1	± 1	0
	$\eta_{ m LR}$	0	0	± 1	0	± 1	∓ 1	0	± 1
	$\eta_{ m RL}$	0	0	0	± 1	± 1	∓ 1	0	±1

Four-Fermion Contact Interactions

$\frac{d\sigma}{1-\sigma} = A(s,t) + B(s,t)\varepsilon + C(s,t)$	ϵ^2		LEP P	relimina	ry com	ь. (µµ	ι & ττ))
dcos0		Λ^{-}	Λ^+			I		
Fit $\varepsilon = 1/\Lambda^2$ (set $\sigma^2 = 4\pi$)	LL	9.8	16.5					
	RR	9.4	15.8					
ε compatible with S.M.	VV	16.5	26.2					
	AA	14.0	21.7					
	RL	8.5	11.2					
95% C.L. limits for both signs	LR	8.5	11.2					
	V0	13.5	22.9					
	A0	13.2	15.6					
Λ > 8.5 – 26.2 TeV		1^{+}	1-	<u> </u>	I	0	I	30
			_	Λ^{-} (TeV)		Λ^+ (Te	V)

30.

Contact Interactions for quarks

Heavy flavour measurements give limits on eebb, eecc C.I. **These limits and those on eell only accessible to LEP data**

Leptoquarks / RPV squarks

	Limit on scalar LQ mass (GeV/c^2)									
	$S_0(L)$	$S_0(R)$	$\tilde{S}_0(R)$	$S_{\frac{1}{2}}(L)$	$S_{\frac{1}{2}}(R)$	$\tilde{S}_{\frac{1}{2}}(L)$	$S_1(L)$			
LQ_{1st}	632	103	170	179	158	-	387			
LQ_{2nd}	593	-	174	180	167	-	405			
LQ_{3rd}	NA	NA	358	NA	-	136	747			
		Limit on vector LQ mass (GeV/c^2)								
	$V_0(L)$	$V_0(R)$	$\tilde{V}_0(R)$	$V_{\frac{1}{2}}(L)$	$V_{\frac{1}{2}}(R)$	$\tilde{V}_{\frac{1}{2}}(L)$	$V_1(L)$			
LQ_{1st}	829	147	409	167	340	120	620			
LQ_{2nd}	846	148	408	168	314	120	633			
LQ_{3rd}	448	183	NA	196	353	NA	448			

LQ: $g_{L}g_{R}$ strongly constrained by low energy data

> Assume only one nonvanishing coupling at a time

ALEPH preliminary ($g^2 = 4\pi\alpha$)

(data with $s^{1/2} \leq 202 \text{ GeV}$)

Limits much higher than the beam energy

For comparison, Direct Limits for 1st generation LQ: from Tevatron $\sim 225 \text{ GeV}$ (indip. of g) if LQ decays 100% to charged lepton ~ 275-290 GeV $(g^2 = 4\pi\alpha)$ from Hera Indirect limits from Low energy data (atomic parity violation, rare decays) ~ 430-1500 GeV ($g^2 = 4\pi\alpha$)

RPV Sneutrinos

Superpotential term $\lambda_{ijk} L_L^i L_L^j \overline{E}_R^k$ (i < j)would contribute to dilepton production via both s- and t-channel diagrams

λ^2	e^+e^-	$\mu^+\mu^-$	$\tau^+\tau^-$
λ_{121}^2	$\tilde{ u}_{\mu}$ (s,t)	$\tilde{ u}_e$ (t)	
λ_{131}^2	$\tilde{ u}_{ au}$ (s,t)		$\tilde{\nu}_e$ (t)
$\lambda_{121}\lambda_{233}$			$\tilde{\nu}_{\mu}$ (s)
$\lambda_{131}\lambda_{232}$		$ ilde{ u}_{ au}$ (s)	·

Fit to differential cross sections assuming $\Gamma_{\tilde{v}} \leq 1 \text{GeV}$

If only one non-zero coupling is assumed only t-channel exchange is possible for $\mu\mu$ and $\tau\tau$ final states \Rightarrow weaker limits

 $\begin{array}{lll} m_{\widetilde{\nu}} & 100 \; GeV & 200 \; GeV \\ |\lambda_{121}| & < 0.21 & < 0.28 & @\; 95\% \; C.L. \\ |\lambda_{131}| & < 0.48 & < 0.66 & (DELPHI) \end{array}$

Extra Z Bosons

 $(qq/\mu\mu/\tau\tau cross sections + \mu/\tau asymmetries)$

Predicted in GUT theories

 $E(6) \Rightarrow \chi, \psi, \eta$ models

Left-Right simmetric (LR)

Sequential Standard Model (SSM)

Prel. LEP combination (all LEP2 data)

assuming $\theta_{ZZ'} = 0$ Lower limits @ 95% C.L.

Model		χ	ψ	η	L-R	\mathbf{SSM}
$\mathbf{M}_{\mathbf{Z}'}^{limit}$	(GeV/c^2)	678	463	436	800	1890

Model independent fits to *ll* channels assuming universality (DELPHI), $\theta_{ZZ'} = 0$ Limits on normalized couplings (for a given M_{Z'} and g'² = 4 π) $|\mathbf{a}_1^N| = \mathbf{a}_1 \sqrt{\frac{s}{m_{Z'}^2 - s}} < 0.19 |\mathbf{v}_1^N| < 0.21$

Low Scale Gravity

Extreme weakness of gravity → Hierarchy problem $M_{Pl} = G_N^{-1/2} \cong 10^{19} \text{ GeV} >> M_{EW} \cong 10^3 \text{ GeV}$

Possible solution by *Arkani-Hamed*, *Dimopoulos*, *Dvali* : quantum gravity scale could be ≈ 1 TeV if gravitons propagate in large **extra-dimensions** while other particles are confined to **3**+**1** dimensions

$$\begin{split} M_{Pl}^{2} &\approx R^{n} M_{D}^{n+2} & \text{n: number of extra-dimensions} \\ M_{D} &\approx M_{EW} & \text{R: compactification radius} \\ \text{For } n = 1 \text{ this happens at } R \cong 10^{13} \text{ cm} & \rightarrow \text{excluded !} \\ n = 2 & R \cong 0.1 - 1 \text{ mm} \rightarrow \text{(stringent bounds from SN1987A)} \\ n = 3 - 7 & R \cong 1 \text{ nm} - 1 \text{ fm} \end{split}$$

Not excluded by current gravity meas.

The size of extra dimensions could be within reach of present and future colliders In our 4D-world gravitons would appear as massive due to momentum escaped into the extra dimensions

Low Scale Gravity

Virtual graviton exchange would modify fermion pair cross sections

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta} = A(s,t) + \frac{\lambda}{M_{\mathrm{s}}^4}B(s,t) + \frac{\lambda^2}{M_{\mathrm{s}}^8}C(s,t)$$

 $M_s \approx M_D$ (Hewett, Rizzo) $\lambda \approx O(1)$ depending on the full theory (weakly on n)

Similar to Contact Interaction but:

- scale dependence $\approx 1/M^4$,
- angular distribution has terms with $\cos^3\theta$, $\cos^4\theta$

Maximum sensitivity in **Bhabha** scattering due to interference with t-channel γ –exchange

Fractional deviation from SM decreases at large $\cos\theta$ \Rightarrow effect on the *Luminosity* meas. $< 10^{-4}$ for M_s =1 TeV

Extra Dimensions - results from Bhabha

TeV Strings – results from Bhabha

String theory of quantum gravity could lead to contact interactions, with stronger effects than virtual graviton exchange.

(Accomando, Antoniadis, Benakli

Cullen, Perelstein, Peskin)

Bhabha cross section modified to:

$$\frac{d\sigma}{d\cos\theta} = \left(\frac{d\sigma}{d\cos\theta}\right)_{SM} \left|\frac{\Gamma(1-\frac{s}{M_S^2})\Gamma(1-\frac{t}{M_S^2})}{\Gamma(1-\frac{s}{M_S^2}-\frac{t}{M_S^2})}\right|^2$$

M_s string scale

L3 preliminary result: $M_s > 0.57$ TeV @ 95% C.L.

Conclusions / Prospects

• Results (final/preliminary) from each experiment consistent with SM.

• Preliminary LEP combinations with the full statistics consistent with SM. *(Experimental Systematics under control and not dominant.)*

• No evidence for new physics, tight constraints set, some limits only accessible to LEP data.

• Each experiment should finalize data analyses soon.

• LEP data will be combined: final agreement on what to do within LEP Working Group (definitions, method, common uncertainties, ...)

• Combine measurements of electron pairs, most sensitive channel for many indirect searches. *(Theoretical uncertainties could be the dominant ones)*

• Cover as many interpretations as possible.