

Isabel Trigger, CERN EP Division, OPAL on behalf of the Aleph, Delphi, L3 and Opal Collaborations EPS, Aachen, July 17-23, 2003

- Why look for sfermions?
- What happens if there are light \tilde{f} ?
- Direct searches
- Where else could they be hiding?
- What do the results mean?

How do we usually search for Supersymmetry?

- all SUSY models predict scalar partners for the fermions
- also fermionic partners for gauge and Higgs bosons \Rightarrow charginos and neutralinos
- often consider $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ to be lightest unstable SUSY particles, large cross-section

SUSY and Light Sfermions

3

- SUSY models predict scalar partners for left- and right-handed Standard Model fermions
- in general, \tilde{f}_L, \tilde{f}_R mix to form mass eigenstates (mixing \propto *fermion* mass, ignore for $\tilde{\mathrm{e}}, \tilde{\mu}$)
- if they do not mix, \tilde{f}_R eigenstate is lighter (for $an eta \geq 1$)

$$\begin{split} m_{\tilde{\ell}_R}^2 &= m_0^2 + 0.15m_{1/2}^2 - m_{Z^0}^2 \cos 2\beta \sin^2 \theta_W \\ m_{\tilde{\ell}_L}^2 &= m_0^2 + 0.52m_{1/2}^2 - \frac{m_{Z^0}^2}{2} \cos 2\beta (1 - 2\sin^2 \theta_W) \\ m_{\tilde{\nu}}^2 &= m_0^2 + 0.52m_{1/2}^2 + \frac{m_{Z^0}^2}{2} \cos 2\beta \end{split}$$

- m_0 is common sfermion mass at GUT scale
- $m_{1/2}$ is common gaugino mass at GUT scale

What happens if there are light $ilde{f}$?

 $m_0, m_{1/2}$ both small:

- *t*-channel $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ production may cause negative interference so may NOT see charginos!
- or light sleptons or sneutrinos can mean charginos decay almost invisibly

• s-channel cross-section for $\tilde{f}_R \bar{\tilde{f}}_R$ smaller than for $\tilde{f}_L \bar{\tilde{f}}_L \to \text{limits on } \tilde{f}_R \bar{\tilde{f}}_R$ conservative

Direct Searches for Sfermion Pair Production

RP-Conserving Signatures for Slepton and Squark Decay:

- $\tilde{f} \to f \tilde{\chi}_1^0$
- sleptons: $\ell^+\ell^- + E_T^{\text{miss}}$
- squarks (excluding \tilde{t}): $q\bar{q}'+E_T^{\rm miss}$
 - generally \tilde{t}_1, \tilde{b}_1 assumed to be lightest squarks see stop/sbottom talk

Searches for Promptly Decaying Pair-Produced Sleptons

6

LH function for data lies

Sfermion Searches

EPS HEP2003, Aachen

Selectron and Stau Cross-Section Limits

Model-Independent Mass Limits from Standard Slepton Searches

8

Can set model-independent limits for ℓ_R produced in purely *s*-channel processes:

EPS HEP2003, Aachen

Standard Searches Interpreted as Mass Limits in Constrained MSSM

Searches for Mass-Degenerate Squarks

... a reinterpretation of \tilde{t} searches; right-hand plot assumes GUT-level gaugino unification. Indirect limit on $M_{\tilde{g}}$ is from limit on M_2 from $\tilde{\chi}^{\pm}, \tilde{\chi}^0$ searches.

EPS HEP2003, Aachen

Sfermion Searches

How could light sleptons hide from direct searches?

- different models can predict different final states:
 - MSSM with gravity mediated SUSY breaking: $\tilde{f} \to f \tilde{\chi}_1^0$: fermions and missing energy
 - GMSB: $\tilde{f} \to f' \text{NLSP}(\tilde{\chi}_1^0, \tilde{\tau}, \tilde{\ell}, \ldots) \to f \tilde{G} \gamma, f \tilde{G} \tau, f \tilde{G} \ell, \ldots$
 - RPV: $\tilde{f} \rightarrow$ just about anything (maybe no $E_{\rm miss}$, many fermions in final state
- Lifetime: *eg.* GMSB final state depends on NLSP identity and lifetime, generally extra photons or leptons (see GMSB talk)
- Unexpected decays: eg. RPV (see RPV talk)
- Masses nearly degenerate with LSP: $\tilde{e}_R \tilde{e}_L$ single electron / unequal mass searches
- $\tilde{\tau}$ mixing \rightarrow decoupling from Z⁰, LEP 1 constraints do not apply: special light $\tilde{\tau}$ searches

Staus: Mixing, Decoupling

Search for low mass $ilde{ au}$ which decouples from ${
m Z}^0$: $M_{ ilde{ au}}>$ 26.3 GeV ($\Delta M>m_{ au}$)

- "low mass": $10~{
 m GeV} < M_{ ilde{ au}} < 45~{
 m GeV}$ and "very low mass": $2~{
 m GeV} < M_{ ilde{ au}} < 10~{
 m GeV}$
- signature: 2 τ in the barrel, harder than 2-photon, softer than 2-fermion

EPS HEP2003, Aachen

Sfermion Searches

July 17-23, 2003

Selectrons: $\tilde{\mathbf{e}}_{R}^{+}\tilde{\mathbf{e}}_{L}^{-}$

- Only *s*-channel for $\tilde{\mu}, \tilde{\tau} \to \text{can have only } \tilde{\mu}_L^+ \tilde{\mu}_L^-$, $\tilde{\mu}_R^+ \tilde{\mu}_R^-$, $\tilde{\tau}_L^+ \tilde{\tau}_L^-$, $\tilde{\tau}_R^+ \tilde{\tau}_R^-$
- \tilde{e} can also be produced in t-channel \rightarrow can have $\tilde{e}_L^+ \tilde{e}_L^-$, $\tilde{e}_R^+ \tilde{e}_R^-$ AND $\tilde{e}_R^+ \tilde{e}_L^-$, $\tilde{e}_L^+ \tilde{e}_R^-$

 $M_{\tilde{e}_L} \neq M_{\tilde{e}_R}$, so do Unequal Mass Search (OPAL) or, if decay products of \tilde{e}_R very soft, dedicated Single Electron Search (L3, Aleph) to plug hole at small $M_{\tilde{e}_R} - M_{\tilde{\chi}_1^0}$

Constrained MSSM Results from Combining Searches

Combine $\tilde{\ell}, \tilde{\chi}^0$ searches (for $M_{\tilde{e}_R} - M_{\tilde{\chi}^0_1} >$ $10~{\rm GeV}, |\mu| < 1~{\rm TeV}, 1 \leq \tan\beta \leq 40$ & no mass splitting in $ilde{ au}/ ilde{t}$ family)

EPS HEP2003, Aachen

Sfermion Searches

Lifetime

Dedicated searches for small mass differences between \tilde{f} and $\tilde{\chi}_1^0$ (or GMSB scenarios with stable or quasi-stable NLSP) with \tilde{f} decaying in detector volume or outside it:

- Standard acoplanar lepton pair searches (covered above)
- small ΔM searches (partly covered above single e^{\pm} analysis, low mass $\tilde{\tau}$,...)
- displaced vertices (see GMSB talk)
- kinked tracks (see GMSB talk)
- heavy stable charged particles (next slide)

Searches for Heavy Stable Charged Particles

16

Look for anomalous dE/dx.

Combine many \sqrt{s} to dilute efficiency hole. 95% CL limit for $\tilde{\mu}_R, \tilde{\tau}_R$: 98.0 GeV

EPS HEP2003, Aachen

Sfermion Searches

July 17-23, 2003

Conclusions

