Measurement of α_s in Radiative Hadronic Events

Jochen Schieck (schieck@mppmu.mpg.de)

MPI München for the OPAL Collaboration

QCD '03 Montpellier

<u>Outline</u>

- Introduction and Motivation
- ·Event Selection
- •Determination of vs'
- •Event Shape Fits

2nd July 2003

OPAL : Measurement of alpha_s in Radiative Hadronic Events

OPAL Physics Note 519

i an

OPAL : Measurement of alpha_s in Radiative Hadronic Events

2nd July 2003

Introduction and Motivation

radiative hadronic events allow QCD studies at reduced CME

3x10⁶ hadronic Z⁰ decays selected at 91.2 GeV

2nd July 2003

Radiative Hadronic Events

Photon emission before or immediately after Z⁰ Production do not interfere with QCD process

Introduction and Motivation

•time scale of photon radiation has to be less than scale of parton shower •experimental selection cuts: photon with large k_T to recoiling qq pair

OPAL : Measurement of alpha_s in Radiative Hadronic Events

2nd July 2003

Event Selection (I): Isolation Cuts

- •EM cluster in barrel region
- Select EM cluster with 10 GeV

energy

•angle between the photon and any jet is required to be larger than 25⁰

•energy and momentum in a 0.2 radian cone around the cluster less than 0.5 GeV/(c)

Event Selection (II): Likelihood

Likelihood Photon Selection:

barrel region and isolation

2nd July 2003

• difference to presampler measurement

Event Selection: Background

number of isolated neutral hadrons from fit to data
isolated neutral hadrons are the dominant source of background

•non-radiative events which are classified as radiative events fake events at higher scale (impact on α_s)

2nd July 2003

Selected Events

2nd July 2003

OPAL : Measurement of alpha_s in Radiative Hadronic Events

Event Shape Variables

- •Thrust (1-T)
- ·Heavy Jet Mass M_H
- ·Jet Broadening $B_{\rm T}$ and $B_{\rm W}$

event is boosted back into center of mass system of hadrons

2nd July 2003

Correction of Event Shape Distributions

 background contributions subtracted with Monte Carlo \sqrt{s} = 78.0GeV /o•do/d(1-T 10 non-radiative Multihadrons (~5-15%) ττ events (~1%) 1 bin-by-bin correction 10 for detector effects 0.2 0.3 0.1 0.4 0 (1-T)(1-T) after background subtraction and correction for detector effects

Measurement of $\alpha_{\rm s}$

 $\cdot O(\alpha_s^2)$ and NLLA perturbative QCD predictions combined with In(R) matching scheme •MC at vs' used for bin-bybin hadronisation correction •fit performed in the region with small corrections

Combined Result for $\alpha_{s}(M_{7})$

Systematic Uncertainties

- •experimental uncertainty :0.0034
 - •largest contribution:
 - tighter cut on thrust axis (0.0031)
- •hadronisation uncertainty: 0.0061
 - •largest contribution:
 - HERWIG instead of JETSET (-0.0050)
- •theoretical uncertainty +0.0062-0.0049 change of scale x_{μ} =0.5 ... 2

Total systematic error: -0.0085 +0.00

2nd July 2003

OPAL : Measurement of alpha_s in Radiative Hadronic Events

(A)

Energy dependence of $\alpha_{\!s}$

combined NNLO fit to renormalisation group equation with $\Lambda^{(5)}_{\frac{MS}{MS}}$ as free parameters

 $\Lambda_{\frac{MS}{MS}}^{(5)} = 0.203 \pm 0.014(stat.)_{-0.094}^{+0.113}(syst.)GeV$

2nd July 2003

OPAL : Measurement of alpha_s in Radiative Hadronic Events

Conclusion

•measurement of α_s with radiative Z⁰ events •FSR allows access to lower energy scales at the same experiment •value of α_s consistent with measurement with non-radiative events

 $a_s(M_Z) = 0.1176 \pm 0.0012(stat.)_{-0.0085}^{+0.0093}(syst.)$

2nd July 2003