Experimental Tests of the Standard Model

Pippa Wells CERN

21 July 2003

<u>Outline</u>

- Tests of the electroweak sector of the Standard Model
- Generally not: QCD, heavy flavours, CKM matrix, CP violation
- Emphasis on new results (changes since last summer)
- Z pole heavy flavour forward-backward asymmetries
- Gauge boson production and properties from LEP2 and Tevatron Run II
- Top physics from Tevatron Run II
- Status of muon g-2: interplay of theory and experimental inputs
- Global electroweak fits and the Higgs mass

Many more details can be found in the presentations in the parallel session.

Many thanks to numerous people: LEP, SLD, CDF and D0 electroweak and top working groups, and in particular: P Azzi, E Barberis, E Barberio J Butterworth, D Charlton, R Chierici, B Clare, M Davier, S Eidelman, M Elsing, J Estrada, C Gerber, M Grünewald, A Heinson, A Kotwal, J Kühn, K McFarland, P Murat, P Newman, U Parzefall, B Pietrzyk, G Quast, C Rembser, M Schmitt, A Tapper, R Tenchini, T Teubner, M Verzocchi, T Wengler

LEP and SLD: Z pole

LEP and SLC: e⁺e⁻ collisions

LEP 1989-2000 Total lumi. 1000 pb^{-1} ALEPH, DELPHI, L3, OPAL recorded:

- LEP1 4.5M Z per experiment including offpeak data.
- LEP2 Above WW threshold.

SLD at SLC, 600k Z decays with e⁻ beam up to 77% polarised

Z pole

LEP Z lineshape, LEP A_{FB}^{ℓ} , τ pol. SLD A_{LR} and A_{LRFB}^{ℓ} asymmetries

New: Heavy flavour A_{FB} results DELPHI (prelim), OPAL (final)

Z couplings:

$$g_{Vf} = \sqrt{\rho} \left(T_f^3 - 2Q_f \sin^2 \theta_{eff}^f \right); g_{Af} = \sqrt{\rho} T_f^3$$

Partial widths $\Rightarrow g_{Vf}^2 + g_{Af}^2;$ Asymmetries $\Rightarrow g_{Vf}/g_{Af} = 1 - 4|Q_f| \sin^2 \theta_{eff}^f$

Define
$$A_{\rm f} = 2 \frac{g_{Vf} g_{Af}}{g_{Vf}^2 + g_{Af}^2}$$

Related to Z pole asymmetries by:
 $A_{\rm FB}^{0, \rm f} = \frac{3}{4} A_{\rm e} A_{\rm f}$; $A_{\rm LR}^0 = A_{\rm e}$; $A_{\rm LRFB}^0 = \frac{3}{4} A_{\rm f}$

 $A_{\rm FB}^{
m 0,\,b}$ sensitive to $\sin^2 heta_{
m eff}^{
m lept}$

Final for some time. (See global fits)

Forward: $\theta < 90^{\circ}$

 $A_{\rm FB} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B}$

Heavy flavour forward-backward asymmetries

Select Z to hadron decays. Quark direction from thrust axis.

Heavy flavours tagged by leptons (high p, p_T), B,D lifetime, secondary vertex mass... Forward vs. backward going quark determined from lepton or inclusive charge tag. Fit to $\frac{d\sigma}{d\cos\theta} \propto \frac{3}{8}(1 + \cos^2\theta) + A_{FB}\cos\theta$ in bins of flavour purity for $A_{FB}^{b\overline{b}}$ (and $A_{FB}^{c\overline{c}}$).

 $\mathbf{A_{FB}}(\sqrt{\mathbf{s}})$ Analyses self-calibrated from data LEP for flavour purity, B^0 mixing and 0.1 charge mistag using double tag methods. 0.05 Measurements first combined at Z peak, and ± 2 GeV away. Then corrected to give pole 0 asymmetries at $\sqrt{s} = M_Z$ A_{FB}^{D} A_{FB}^{c} -0.05 <u></u> 90 91 92 93 94 √s [GeV]

 $A_{\text{FB}}^{0, b} = 0.0997 \pm 0.0016$, Total sys 0.0007, Common sys 0.0004 ; SM 0.1036 $A_{\text{FB}}^{0, c} = 0.0706 \pm 0.0035$, Total sys 0.0017, Common sys 0.0009 ; SM 0.0740

(Summer 2002, $A_{FB}^{0, b} = 0.0995 \pm 0.0017$, $A_{FB}^{0, c} = 0.0713 \pm 0.0036$)

Also waiting for SLD heavy flavour results to be finalised.

Comparison of asymmetry measurements & $\sin^2 \theta_{eff}^{lept}$

Fermion pair production at LEP2

we return peak is at $\sqrt{0} = m_Z$ if the beam energy calibration is conv

New: Preliminary E_{beam} updates from ADLO

Measured average beam energy differs from LEP preliminary value by:

$$\Delta E_{\text{beam}} = -14 \pm 21(\text{stat.}) \pm 20(\text{syst.}) \pm 20(\text{LEP}) \text{ MeV}$$

Fermion pair production at LEP2

LEP combined cross-sections, asymmetries and differential crosssections available: $q\overline{q}$, bb, $c\overline{c}$, $e^+e^-, \mu^+\mu^-, \tau^+\tau^-.$

Good agreement with SM predictions.

Constraints on new physics (contact interactions, Z'...) O(1–10) TeV,

Gauge boson production at Tevatron and LEP

Tevatron at Fermilab

Two experiments CDF and D0 - major Run II upgrades $p\overline{p}$ collisions with $\sqrt{s} = 1.96$ TeV Run I, 1992-1995 80 pb⁻¹ with $\sqrt{s} = 1.8$ TeV Run IIa in progress. Expect ~300 pb⁻¹ FY2003 Run IIb, between 4.5 and 8.5 fb⁻¹ by FY2009

http://www.fnal.gov/pub/now/upgradeplan/

All Run II results shown here are new since last summer, and use a partial data set (typically 50pb⁻¹).

Standard Model Tests

Pippa Wells

14

Tevatron Run II $\sigma_{W,Z} \cdot Br(W, Z \rightarrow leptons)$

New Run II

Also measure $\sigma_W \cdot Br(W \to \tau \nu)$

Number of tracks of τ

Lepton universality test in W decays: CDF Run II preliminary:

$$g_{ au}/g_e = 0.99 \pm 0.04$$

Cross section \times leptonic Br compilation

Dominant experimental uncertainties: luminosity, PDFs, hadronic recoil, detector acceptance.

W branching ratios from LEP

$\mathsf{Br}(\mathsf{W} \to \ell \nu)$ and indirect Γ_W from Tevatron Run II

New: Partial cross section ratio from Tevatron Run II

$$R \equiv \frac{\sigma_{W} \cdot Br(W \to \ell \nu)}{\sigma_{Z} \cdot Br(Z \to \ell \ell)} = \frac{\sigma_{W}}{\sigma_{Z}} \frac{\Gamma_{Z}}{\Gamma(Z \to ee)} \frac{\Gamma(W \to e\nu)}{\Gamma_{W}}$$

Run II: $R = 10.36 \pm 0.31$

 $\begin{array}{l} \mathsf{LEP} \Rightarrow \mathsf{Br}(Z \to \ell \ell), \\ \mathsf{SM} \Rightarrow \Gamma(\mathsf{W} \to \mathsf{ev}), \\ \mathsf{Theory} \Rightarrow \sigma_{\mathsf{W}} / \sigma_{\mathsf{Z}} \text{ (Van Neerven et al.)} \end{array} \right\} \text{ Infer } \mathsf{Br}(\mathsf{W} \to \ell v) \text{ or indirect } \Gamma_{\mathsf{W}} \\ \end{array}$

Combining with Run I, correcting for evolution of σ_W/σ_Z with \sqrt{s} .

 $\begin{array}{ll} \text{Br}(W \to \ell \nu) & (10.53 \pm 0.26)\% \\ \Gamma_W & 2.150 \pm 0.054 \text{ GeV} \end{array}$

Electroweak tests with gauge bosons

Examples from Run II

W γ production (e and μ channels)

81 events, 25.4 expected background.

 $W\gamma$, $Z\gamma$, WW and WZ production sensitive to anomalous trilinear gauge couplings.

At present, LEP results generally give stronger constraints.

 $\sin^2 \theta_{\rm eff}^{\rm lept}$.

Charged triple gauge couplings

14 possible couplings for WW γ plus WWZ. Reduce to 5 possible anomalous couplings by EM gauge invariance, CP, C & P conservation: g_1^Z , κ_{γ} , κ_Z (=1 in SM), λ_{γ} , λ_Z (=0 in SM) Impose SU(2)xU(1) relations. Further reduced to 3 anomalous couplings: $\Delta \kappa_{\gamma}$, Δg_1^Z , λ_{γ} with $\Delta \kappa_Z = \Delta g_1^Z - \Delta \kappa_{\gamma} \tan^2 \theta_W$ and $\lambda_Z = \lambda_{\gamma}$

These determine the W magnetic dipole and electric quadrupole moment: $(g_1^{\gamma} \equiv 1)$

$$\mu_{W} = \frac{e}{2m_{W}}(g_{1}^{\gamma} + \kappa_{\gamma} + \lambda_{\gamma})$$
$$q_{W} = -\frac{e}{m_{W}^{2}}(\kappa_{\gamma} - \lambda_{\gamma})$$

Anomalous TGCs change W helicities and decay angular distributions.

Polarised differential cross section

New: DLO updated Spin Density Matrix elements and W polarisation

Project out SDM elements from lepton decay angles in W restframe ($\ell \nu q \overline{q}$). CP and CPT tests from off-diagonal SDM elements. Fraction of longitudinally polarised W's

	$\sigma_{\rm L}/\sigma_{ m tot}$
DELPHI	(24.9 ± 3.2) %
L3	$(21.8 \pm 2.7 \pm 1.6)$ %
OPAL	$(23.8 \pm 2.1 \pm 1.4)$ %
SM	23.9 ± 0.1 %

Anomalous TGC: angular observables

Sensitivity to charged TGC from WW, single W and single γ production.

Differential cross sections give stronger constraints than total cross sections.

Use "optimal observables" to exploit full information including correlations between angular variables

CESURSNew: DLO Updated, $O \rightarrow$ final1d fits (LEP combined)2d & 3d fits also made. 2d fits shown here:

Results combined at the level of likelihoods. Couplings consistent with SM, with precision of a few %.

Standard Model Tests

Neutral TGC

No neutral TGC in SM.

Search for anomalous nTGC from $Z\gamma$ and ZZ cross-sections and differential distributions.

Parametrizations exist of two types of anomalous vertex (final state bosons on shell):

From $e^+e^- \rightarrow Z\gamma$, $Z \rightarrow q\overline{q}$ or $v\overline{v}$ Dominant background from ISR.

4 couplings $|h_i^{\gamma}| \le 0.05$ 4 couplings $|h_i^{Z}| \le 0.15$ (LEP combined, 95% CL, 1d fits) ZZ γ and ZZZ e^+ , $Z'\gamma$,

Quartic gauge couplings

WWWW, WWZZ and WW $\gamma\gamma$ exist in SM, but small. Look for anomalous QGCs that respect TGCs.

Main background: (double) ISR

Sensitive variables: cross-section, photon energies and angles.

Updates from AO (WW γ) and A (Z $\gamma\gamma$)

WW γ limits on anomalous contributions to the WW $\gamma\gamma$ and WWZ γ vertices from ADLO. LEP combination in progress \Rightarrow quote typical constraints from one experiment.

Tighter constraints from $Z\gamma\gamma$. Quote LEP combination (ALO).

$$-0.02 < a_0^W / \Lambda^2 < 0.02 \text{ GeV}^{-2}$$

 $-0.05 < a_c^W / \Lambda^2 < 0.03 \text{ GeV}^{-2}$
 $-0.15 < a_n^W / \Lambda^2 < 0.15 \text{ GeV}^{-2}$

 $-0.0009 < a_0^Z / \Lambda^2 < +0.0026 \text{ GeV}^{-2} \\ -0.0033 < a_c^Z / \Lambda^2 < +0.0046 \text{ GeV}^{-2}$

Limits at 95% CL from 1d fits.

W mass and width

W mass measurement at LEP

Fit distribution of reconstructed W masses from final state particles - possible with full LEP2 statistics.

- $q\overline{q}\ell v$: v not measured, but no ambiguity assigning particles to W's
- **qqqqq**: combinatorial background reduced by jet pairing likelihoods. May allow 5 jets in final state (gluon radiation).
- $\ell \nu \ell \nu$: Fit to E_{ℓ} and other kinematic variables (ALEPH, OPAL). Large stat error (×10)

Γ_W from SM relation to M_W or fitted.

($M_{\rm W}$ from threshold cross section - low statistics, only 10pb⁻¹)

W mass at LEP

New ALEPH preliminary result. Shift -79 MeV to 80.385 ± 0.059 GeV

MC

72

Background

76 78

Problem simulating shower satellites in ECAL - low E neutral clusters, especially near electrons. Extra clusters near electron bias jet directions. In general, jet masses biassed.

Solutions:

- Improved shower simulation with EGS.
- Reject "single stack" neutral clusters: "cleaning"
- Some discrepancy remains \Rightarrow reject neutrals within 8 degrees of electron at calorimeter (keep Bremsstrahlung γ)

W mass systematics

Dominant errors	s (LEP co	mbined)		
	$q\overline{q}\ell v$	qqqq	Both	$\pi^-\pi^-$
ISR/FSR	8	8	8	
Hadronisation	19	18	18	γ,Ζ ,ζ ^ζ W ⁺
Detector	14	10	14	
LEP Beam Energy	17	17	17	
Colour Reconnection	_	90	9	
Bose-Einstein	_	35	3	
Total Systematic	31	101	31	Colour Bose-
Statistical	32	35	29	Reconnection Einstein

 $q\overline{q}q\overline{q}$ result only gets ≤ 10 % weight in combination. Why?

WW decay vertices separated by ≈ 0.1 fm. Hadronic distance scale ≈ 1 fm. Colour reconnection: rearrangement of colour flow

Bose-Einstein correlations between like-sign identical bosons

Even small changes to flow of soft particles between jets from different Ws can change reconstructed W mass by several 10 MeV.

Colour reconnection in qqqq final state

Models: SK-I (free parameter κ), ARIADNE-II, HERWIG

Particle flow method:

Number of particles between jets from same W and from different W's. Restricts range of SK-I parameter κ . Sets present error on M_W .

"Cuts and cones":

Evaluate W mass when jet properties are determined without low p particles, "cuts", or with cone jet-finder.

Shift in W mass due to CR reduced but statistical error increases.

Data-MC comparison of W mass shift vs. *p*-cut or cone radius further constrains models.

Hope to use this for final LEP W mass.

Studies in gluon jets at LEP1 also disfavour some models.

Bose-Einstein correlations

Present error on M_W from full effect of LUBOEI model: $\delta M_W = 35 \text{ MeV}$

For independent W's, inclusive two-particle density in $q\overline{q}q\overline{q}$ events is $(Q^2 = (p_1 - p_2)^2)$ $\rho^{WW}(Q)_{indep} = 2\rho^{W}(Q) + 2\rho^{WW}_{mix}(Q)$

 $\rho^{W}(Q)$: two-particle density of single W. ρ_{mix}^{WW} : from mixing $q\overline{q}$ parts of two $q\overline{q}\ell v$ events

Consider difference $\Delta \rho(Q) = \rho^{WW}(Q) - \rho^{WW}(Q)_{indep}$ or ratio D(Q) for like/unlike sign pairs. Compare data and MC with noBEC/BEC in same W/full BEC.

W mass from LEP

All results preliminary, 1996-2000 data (OPAL 1996-1999 data).

W mass from LEP prefers low $m_{\rm H}$

New ALEPH result shifts LEP average by -35 MeV (towards higher Higgs mass)

Cross check, setting BEC and CR uncertainty to zero: $q\overline{q}q\overline{q}$ and $q\overline{q}\ell\nu$ difference:

 $\Delta M_{\rm W} = +22 \pm 43$ MeV

W mass from Tevatron

Run I results final (CDF e, μ , D0 e). No new result from Run II

Method: fit the W mass from Jacobian edge and width from high mass tail of transverse mass distribution: $M_T^2 = 2p_T^\ell p_T^\nu (1 - \cos(\phi^\ell - \phi^\nu))$ D0 also fit p_T^ℓ , $p_T^{miss} = p_T^\nu$ and quote combined result

Systematic errors will be reduced with more luminosity

- Energy/momentum scale controlled with Z events (and $J/\psi,\Upsilon,\pi^0$)
- Response to hadronic recoil and p_T^W model also constrained by Z data

Standard Model Tests

Indirect results from global fits will be discussed later.

NuTeV measure CC and NC rates for v_{μ} and \overline{v}_{μ} . Related to $\sin^2 \theta_W = 1 - \frac{M_W^2}{M_Z^2}$ (Paschos-Wolfenstein). No new proposals to explain this discrepancy

 $\sin^2 \theta_W = 0.22773 \pm 0.00135(\text{stat.}) \pm 0.00093(\text{syst.}); \Delta \text{ SM } 3.0\sigma$

Top physics

Top quark production at Tevatron

Dominant production mechanism (90%)

Top decays to W boson and b quark. Event topologies depend on W decay.

Lepton+jets channel - expect lepton and 4 jets. Soft muon or lifetime tag for b jets improves signal/background.

Run II Top cross sections - CDF

Lepton plus jets with vertex tag at CDF: Run I and Run II results

CDF ℓ +jets Run II

Run II Top cross sections - D0

New Run II Combined results

Even newer: D0 $\sigma_{
m t\bar{t}}$ with lifetime b-tag

Top mass

New: D0 Run I top mass (lepton+jets)

77 events (29 signal and 48 background) used in PRD 58 (1998) 052001.

22 events (10 signal, 12 background) reanalysed. Use individual event probabilities instead of same template for all events.

Comparison with other old results

 $\begin{array}{ll} \mbox{Old Run I average (CDF+D0)} & 174.3 \pm 5.1 \ \mbox{GeV} \\ \mbox{New D0 Run I } \ell \mbox{+jets only} & 180.1 \pm 3.6(\mbox{stat.}) \pm 4.0(\mbox{syst.}) \ \mbox{GeV} \\ \mbox{New CDF Run II } \ell \mbox{+jets} & 171.2 \pm 13.4(\mbox{stat.}) \pm 9.9(\mbox{syst.}) \ \mbox{GeV} \end{array}$

g-2 and $\alpha_{\rm em}(m_{\rm Z})$

Muon (g-2)

Muon (g-2) Collaboration Brookhaven AGS. Measure muon spin precession frequency.

2002:

 μ^+ anomalous magnetic moment $a_{\mu} = (g-2)/2$ measured to 0.7 ppm using data up to 2000.

 $a_{\mu} = 11\,659\,203(8) imes 10^{-10}$

Soon:

Result with 2001 μ^- data, with similar statistics to 2000 μ^+

Problem: Value and spread of theoretical predictions

New prelim CMD-2 July 2003!!!

Standard Model Tests

 $a_{\mu}^{\text{had,LO}}$ from data via dispersion integral $a_{\mu}^{\text{had,LO}} = \frac{1}{4\pi^3} \int_{4m_{\pi}^2}^{\infty} \sigma_{\text{had}}^0(s) K(s) ds$

Recent data included CMD-2, SND, BES 2-5 GeV, ALEPH τ . NEW: CMD-2 prelim update

 σ_{had}^0 bare cross-section for $e^+e^- \rightarrow hadrons$, i.e. taking out radiative corrections. QED kernel $K(s) \sim m_{\mu}^2/3s$, gives strong weight to low energy data.

g-2 calculation problems

Which radiative corrections are applied to data? (eg. latest CMD-2!). Interpolation choices? Use of pQCD? σ_{had}^0 from Inclusive vs Σ exclusive vs τ spectral functions?

Calculation of
$$\alpha(M_Z^2)$$

 $\alpha(s) = \frac{\alpha(0)}{1 - \Delta \alpha_{\ell}(s) - \Delta \alpha_{top}(s) - \Delta \alpha_{had}^{(5)}(s)}$ with $\alpha(0) = 1/137.03599976(50)$ Hadronic part from dispersion integral: $\Delta \alpha_{had}^{(5)} = -\frac{\alpha s}{3\pi} P \int_{4m_{\pi}^2}^{\infty} \frac{R_{had}(s')ds'}{s'(s'-s)}$ $R_{had}(s) = \sigma_{had}^0 / (\sigma_{\mu\mu}^0 = 4\pi\alpha^2/3s)$

Biggest recent improvement from BESII. Future: CMD-2, BEPCII, KLOE, BABAR, BELLE (radiative return)

At present LEPEWWG use result based on data: $\Delta \alpha_{had}^{(5)}(M_Z^2) = 0.02761 \pm 0.00036$ Burkhardt, Pietrzyk 2001 More precise - use pQCD in continuum, eg. $\Delta \alpha_{had}^{(5)}(M_Z^2) = 0.02747 \pm 0.00012$ Troconiz, Yndurain 2001 Impact of new preliminary CMD-2 result on $\alpha(M_7^2)$

Global Electroweak Fits and the Higgs Mass

Global electroweak fit

Electroweak observables can be calculated from a few parameters, eg.

 $\alpha(M_Z^2), \, \alpha_{\rm S}(M_Z^2), \, M_{\rm Z}, \, M_{\rm W}, \, m_{\rm t}, \, m_{\rm H}$

Calculate radiative corrections (ZFITTER): leading terms in m_t^2 and $\log m_H$

 $G_{\rm F}$ known more precisely than $M_{\rm W}$. Change basis and use this as an input instead. Tree level relation:

$$G_{\rm F} = \frac{\pi\alpha}{\sqrt{2}M_{\rm W}^2\sin^2\theta_{\rm W}} = 1.16639(1) \cdot 10^{-5} {\rm GeV}^{-2}$$

Compare input and predicted quantities with measured values. Fits made to several subsets of data, including:

_	All Z pole	All data	All but NuTeV
<i>m</i> t (GeV)	171.5 ^{+11.9} -9.4	$174.3^{+4.5}_{-4.4}$	175.3 ^{+4.4} -4.3
<i>m</i> _H (GeV)	89 ⁺¹²² -45	96^{+60}_{-38}	91^{+55}_{-36}
$\alpha_{\rm S}(M_{\rm Z}^2)$	0.1187 ± 0.0027	0.1186 ± 0.0027	0.1185 ± 0.0027
χ^2 /dof (P)	14.7/10(14.3%)	25.4/15(4.5%)	16.7/14(27.5%)

No external $\alpha_{\rm S}$ input. Additional theoretical syst. errors not included at this stage

http://lepewwg.web.cern.ch/LEPEWWG/

Standard Model Tests

Global electroweak fit

Summer 2003

α

LEP Z lineshape and lepton A_{FB}

LEP tau polarisation

LEP and SLD Z heavy flavour *

SLD A_{LR} LEP hadronic A_{FB} (inclusive) LEP and Tevatron M_W , $\Gamma_W \star$ Tevatron top mass NuTeV vN scattering Atomic Parity Violation \star \star Updated

Global electroweak fit

Top and W mass consistency between direct measurement and prediction from radiative corrections.

Preference for low Higgs mass.

Without accounting for limit from direct searches, but including spread of theoretical uncertainties

$$M_{
m Higgs}$$
 < 219 GeV at 95% CL

But what if.....?

Use the new value for $\Delta \alpha_{had}^{(5)}(M_Z^2)$ (Burkhardt+Pietrzyk 2003)? Small downward shift in M_{Higgs} (min. 96—91 GeV, limit 219—210 GeV)

The top mass increases by 1σ to 179.4 ± 5.1 GeV? Large upward shift in M_{Higgs} (min. 96 \rightarrow 126 GeV, limit 219 \rightarrow 283 GeV)

<u>Future</u>

Errors on electroweak parameters in future, taking error on $\Delta \alpha_{had}^5$ to be 0.00012 in each case (theory driven).

	$M_{\rm W}$	m _t	$\sin^2 heta_{eff}^{lept}$
	(MeV)	(GeV)	
Now	34	5.1	0.00016
TeV IIB	17	1.3	0.00016
LHC	10	1.0	0.00016
LC	7	0.2	0.000085

Also improvements in knowledge of TGCs etc.

Standard Model Tests

<u>Conclusions</u>

Electroweak Standard Model does a great job of describing a range of parameters with radiative corrections at loop level firmly established.

Any hints of new physics? Largest discrepancies (only $\sim 3\sigma)$

- $A_{FB}^{0, b}$ vs. A_{LR} . No experimental progress to be expected in near future.
- NuTeV little impact on global fit. An unexplained deviation/fluctuation.
- g-2. Importance of settling experimental input from lower energy e^+e^- colliders before chasing the ambulance. Latest CMD-2 update \Rightarrow discrepancy $\sim 2.5\sigma$.

What to look forward to?

- W and top mass measurements final LEP2, TeV Run II
- Higgs mass measurement!

Full set of electroweak measurements place strong constraints on any new physics.

Great prospects for further enlightenment in near and not so near future.