Measurement of Heavy Quark Forward-Backward Asymmetries Using a Lepton Tag in Hadronic Z Decays in Multihadronic Z Events

Thomas Krämer

Institut für Experimentalphysik der Universität Hamburg / DESY

Representing the 4 LEP collaborations

ALEPH, DELPHI, L3, and OPAL

EPS conference, Aachen, Germany, July 19, 2003 Tests of the Standard Model

Outline

- Introduction
- Asymmetry measurement
- Quark flavour separation
- LEP results and conclusion

Latest LEP ResultsDELPHI:July 2003OPAL:July 2003ALEPH:December 2001L3:October 1999

Introduction

Measurements of $\sin^2 heta_{ m eff}$

- $\sin^2 \theta_{\rm eff}$ from lepton measurements smaller than from $A_{\rm FB}^{\rm b}$
- About 3.0σ discrepancy between $\sin^2 \theta_{\text{eff}}^{A_{\text{L}}}$ (SLD) and $\sin^2 \theta_{\text{eff}}^{A_{\text{FB}}^{0,\text{b}}}$ (LEP) $\sigma_{\text{SLD}} \left(\sin^2 \theta_{\text{eff}}^{A_{\text{L}}} \right) \approx \sigma_{\text{LEP}} \left(\sin^2 \theta_{\text{eff}}^{A_{\text{FB}}^{0,\text{b}}} \right)$
- New A^b_{FB} and A^c_{FB} measurements:
 DELPHI and OPAL (July 2003)
 - Z⁰ data sample:
 DELPHI 1991-1995, OPAL 1990–2000
 - Reprocessing of data set (final tracking algorithms and detector calibrations)
 - Improved lepton ID
 - Improved quark flavour separation
 - Fit method improved
 - Better knowledge of the properties of heavy flavour production and decay
 - Smaller errors of external measurements
- \Rightarrow Reduction of systematic uncertainties

The Asymmetry

• Primary processes:

• Definition: Only valid for 4π acceptance

$$A_{\rm FB}^{\rm q} = \frac{\sigma_{\rm F} - \sigma_{\rm B}}{\sigma_{\rm F} + \sigma_{\rm B}}$$

• Efficiency not constant over $|\cos \theta|$ \Rightarrow Use differential cross-section:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta} \propto 1 + \cos^2\theta + \frac{8}{3}A_{\mathrm{FB}}^{\mathrm{q}} \cos\theta \longrightarrow$$

 \Rightarrow Or use bins, i of $\cos \theta$

$$\frac{\sigma_{\mathrm{F}_{i}} - \sigma_{\mathrm{B}_{i}}}{\sigma_{\mathrm{F}_{i}} + \sigma_{\mathrm{B}_{i}}} = A_{\mathrm{FB}}^{\mathrm{q}} \cdot \frac{8}{3} \frac{|\cos \theta_{i}|}{1 + \cos^{2} \theta_{i}}$$

• Relation of $A_{\rm FB}^{\rm q}$ to Z⁰ to fermion couplings:

$$A_{\rm FB}^{\rm q} = \frac{3}{4} \mathcal{A}_{\rm e} \mathcal{A}_{\rm q} = \frac{3}{4} \frac{c_{\rm Le}^2 - c_{\rm Re}^2}{c_{\rm Le}^2 + c_{\rm Re}^2} \frac{c_{\rm Lq}^2 - c_{\rm Rq}^2}{c_{\rm Lq}^2 + c_{\rm Rq}^2}$$

 $c_{
m Lf} = g_{
m Vf} + g_{
m Af}$ left handed coupling $c_{
m Rf} = g_{
m Vf} - g_{
m Af}$ right handed coupling

- Weak interaction $\Rightarrow c_{\rm L} \neq c_{\rm R}$
- Measured asymmetry \rightarrow pole asymmetry (Z⁰/ γ interference, pure γ exchange)

Measurement

- Z^0 data at three \sqrt{s} values
- $Z^0 \rightarrow$ hadron event selection
- Reconstruct event thrust axis

 \Rightarrow Direction of $q\bar{q}$, can't yet distinguish q or \bar{q}

- Tag heavy flavours from b, c hadron semileptonic decays, *i.e.* identify leptons
 - \Rightarrow Heavy flavour enriched sample
- Reconstruct properties for quark flavour separation (find jets, reconstruct secondary vertices ...)
- Do quark flavour separation to find

 $b \to \ell^- \text{and} \ c \to \ell^+$

- Lepton charge \Rightarrow q or \bar{q}
- $A_{\rm FB}^{\rm b}$ measurement

diluted by cascade decays $b \to c \to \ell^+$

- B mixing $\Rightarrow A_{\rm FB}^{\rm b,obs} = (1 2\bar{\chi})A_{\rm FB}^{\rm b}$
- Apply a fit to 2 event classes
 - 1 lepton events

(at least 1 identified lepton)

- $\Rightarrow A_{\rm FB}^{\rm b}$ and $A_{\rm FB}^{\rm c}$ measurement
- 2 lepton events

(2 leptons, both with high b probab.)

 \Rightarrow mixing parameter $ar{\chi}$

Lepton Identification

Quark Flavour Separation (DELPHI)

DELPHI: Likelihood Selection

- Construct likelihood ratios \mathcal{P}_k separately for the 4 groups
- Information used:
 - Lepton p and $p_{\rm T}$
 - Jet charge
 - b-tagging variable
 - * Jet lifetime probability
 - * Effective mass assigned to secondary vertex
 - Rapidity of tracks associated to secondary vertex
 - * Jet energy fraction carried by charged particles from secondary vertex
- Fit uses 2 dim. distribution:

$$(\mathcal{P}_b \xrightarrow{} \ell^- - \mathcal{P}_b \xrightarrow{} c \xrightarrow{} \ell^+) \operatorname{vs.} \mathcal{P}_c \xrightarrow{} \ell^+$$

Quark Flavour Separation (OPAL)

OPAL: 2 Neural Networks

- 1. $b \to \ell^-$ identification with NET_b
- 2. $c \rightarrow \ell^+$ identification with NET_c
- $\bullet\,$ Variables common to NET_b and NET_c
 - Lepton p and $p_{\rm T}$
 - Lepton jet energy
 - Scalar sum of $p_{\rm T}$
- $\bullet\,$ Additional variables for NET_c
 - Vertex decay length significance for lepton jet and jet without lepton
 - Impact parameter sig.
- $\bullet\,$ Fit uses 2 dim. distributions of NET_{b} vs. NET_{b}

Systematics Overview

Measurement of Heavy Quark Forward-Backward Asymmetries Using a Lepton Tag

LEP Results for $A_{
m FB}^{
m 0,b}$

LEP Results for $A_{
m FB}^{0,{
m c}}$

Measurement of Heavy Quark Forward-Backward Asymmetries Using a Lepton Tag