Jet production in $\gamma\gamma$ collisions at LEP

Thorsten Wengler, CERN

- \Rightarrow (Di-) Jet production mechanisms in $\gamma\gamma$ – collisions
- ⇒ Single jet inclusive
- ⇒ Di-jet inclusive
- ⇒ Jet structure in di-jet events

(Di-) jet production mechanisms in $\gamma\gamma$ -collisions

Single jets inclusive (L3)

<u>Data sample</u>

- √s= 189-208 GeV
- L = 560 pb⁻¹

Event / Jet selection

- Standard γγ-selection
 - Hadronic final state with
 > 6 tracks/clusters
 - Detected Energy < 0.4 \sqrt{s}
 - No tagged electrons in forward calorimeters
 - ⇒ 1% background left (10 % at high p_T)
- Inclusive k_ (R_0=1.0) with $p_{\rm T}$ > 3 GeV, $|\eta|$ < 1

Single jet inclusive cross-section

Single jet inclusive cross-section cont.

Di-jet: more access to the "inside"

Data selection and background (OPAL)

<u>Data sample</u>

- √s = 189-209 GeV
- L = 593 pb⁻¹

Event / Jet selection

- Standard γγ-selection
 ⇒ 5% background left (10-15% at high E_T)
- Inclusive k₁ (R₀=1.0) with mean E_T > 5 GeV, $|\eta| < 2$, $|\Delta E_{T,1,2}| / \Sigma E_{T,1,2} < 0.25$ for cross-sections
- k_{\perp} and cone ($\eta \phi$ -radius = 1.0) for jet structure comparisons

Di-jet angular distributions: quarks vs. gluons

NLO: Klasen et al.

The di-jet cross-section vs. mean E_{T}^{jet}

The di-jet cross-section vs. x_{γ}

The internal structure of jets: quarks vs. gluons

The internal structure of jets cont.

Quark jets are more collimated than gluon jets, but both show the same dependence on E_T and η

 k_{\perp} jets are more collimated than cone jets and are better described by the Monte Carlo

Single jet (L3) and Di-jet (OPAL) production has been studied in 2-photon collisions at LEP

The single jet cross section is underestimated by NLO at high $p_{\rm t}$ (as seen in hadron production before)

Di-jet cross-section are measured in regions with small and regions with large expected contributions from MIA

NLO QCD agrees well with the di-jet data in regions where it is expected to be reliable.

Quark and gluon dominated sub-samples in di-jet events are studied and show the behavior expected from QCD for jet structure and angular distributions

Resolved vs. direct event fractions (OPAL)

For higher jet energies the fraction of resolved events at low x_{γ} is still high

(but the cross-section decreases)

Energy flow outside the two leading jets (OPAL)

Energy flow in shaded region vs. η ordered by x_{γ} (more resolved γ is left)

Selection of the $\gamma\gamma$ -sample (OPAL)

Standard $\gamma\gamma$ event selection:

- ΣE_{calo} & (Leading jet ,opposite hemisphere)_{inv.mass} < 55 GeV
- Number of tracks > 6
- Antitag in forward detectors
- Quality cuts on missing momentum, vertex position
- Total remaining background is about 5%

The arrows indicate the cut value

In each case all cuts are applied except on the quantity shown

Energy flow around jets (jet profiles) (OPAL)

Some discrepancy for PHOJET in region between jets, but well described by Monte Carlo in general

Example of hadronisation corrections (OPAL)

Large corrections at $x_{\gamma} \approx 1$ (better look at sum of the highest two bins in x_{γ})

At high ET hadronisation corrections are small ~ 5-10%

The influence of the choice of PDF on NLO (OPAL)

The di-jet cross-section vs. x_{γ} (OPAL)

Measurement for the full $x_{\gamma}^{-} - x_{\gamma}^{+} - space$

The di-jet cross-section vs. x_{γ} (OPAL)

"Single resolved enhanced"

"Double resolved enhanced"

The di-jet cross-section vs. η^{jet} (OPAL)

"Single resolved enhanced"

"Double resolved enhanced"

Di-jet x-section observables (OPAL)

$$\begin{aligned} \frac{\mathrm{d}\sigma_{\mathrm{dijet}}}{\mathrm{d}\bar{E}_{\mathrm{T}}^{\mathrm{jet}}} & \text{with } \bar{E}_{\mathrm{T}}^{\mathrm{jet}} \equiv \frac{E_{\mathrm{T},1}^{\mathrm{jet}} + E_{\mathrm{T},2}^{\mathrm{jet}}}{2} & \text{and } \bar{E}_{\mathrm{T}}^{\mathrm{jet}} > 5 \text{ GeV} \\ \frac{\mathrm{d}\sigma_{\mathrm{dijet}}}{\mathrm{d}x_{\gamma}} & \text{in 3 bins of } \bar{E}_{\mathrm{T}}^{\mathrm{jet}} \left[5 - 7 - 11 - 25\right] \text{ GeV} \\ \frac{\mathrm{d}\sigma_{\mathrm{dijet}}}{\mathrm{d}\log_{10}\left(x_{\gamma}\right)} & \text{for 5 GeV} < \bar{E}_{\mathrm{T}}^{\mathrm{jet}} < 7 \text{ GeV} \\ \frac{\mathrm{d}\sigma_{\mathrm{dijet}}}{\mathrm{d}|\eta_{\mathrm{fwd}}^{\mathrm{jet}}|}, \frac{\mathrm{d}\sigma_{\mathrm{dijet}}}{\mathrm{d}|\Delta\eta^{\mathrm{jet}}|} & \text{for } \bar{E}_{\mathrm{T}}^{\mathrm{jet}} > 5 \text{ GeV} \\ \frac{\mathrm{d}\sigma_{\mathrm{dijet}}}{\mathrm{d}|\eta_{\mathrm{fwd}}^{\mathrm{iet}}|}, \frac{\mathrm{d}\sigma_{\mathrm{dijet}}}{\mathrm{d}|\Delta\eta^{\mathrm{jet}}|} & \text{for } \bar{E}_{\mathrm{T}}^{\mathrm{jet}} > 5 \text{ GeV} \\ \frac{\mathrm{d}\sigma_{\mathrm{dijet}}}{\mathrm{d}|\cos\Theta^{*}|} & \text{for } \bar{E}_{\mathrm{T}}^{\mathrm{jet}} > 5 \text{ GeV}, \quad |\bar{\eta}^{\mathrm{jet}}| < 1, M_{\mathrm{jj}} > 15 \text{ GeV} \\ & \text{with in all cases} \end{aligned}$$

$$|\eta_{1,2}^{\text{jet}}| < 2$$
 and $\frac{|E_{T,1}^{\text{jet}} - E_{T,2}^{\text{jet}}|}{E_{T,1}^{\text{jet}} + E_{T,2}^{\text{jet}}} < \frac{1}{4}$

Data / MC comparisons (L3 single jet analysis)

Thorsten Wengler, CERN @ EPS 03, Aachen, Germany

$$\frac{\partial \varphi_{n}^{(1-x)p}}{\partial x^{p}} + \frac{\partial \varphi_{n}^{(1-x)p}}{\partial x^{p}}$$

Leonardo Bertora, 2003 April 8