Triple and Quartic Gauge Couplings at LEP

Ian Bailey University of Victoria on behalf of the LEP collaborations

- Overview of Couplings Between Gauge Bosons
- LEP2 Measurements
 - Charged TGC's
 - QGC's
 - Neutral TGC's
- Summary and Outlook

Couplings Between Gauge Bosons

- Within the Standard Model
 - Electroweak interactions mediated by γ, Z^0, W^{\pm}
 - $-SU(2)_L \times U(1)_Y$ gauge group structure
 - Non-Abelian group \Rightarrow gauge bosons couplings
- Beyond the Standard Model
 - W sub-structure (technicolour?)
 - Loops of 'new physics' particles (MSSM?)

	TGC	QGC
Charged	$\gamma WW,ZWW$	$(WWWW), (WWZZ), WWZ\gamma, WW\gamma\gamma$
Neutral	$ZZZ, ZZ\gamma, ZZ\gamma, Z\gamma\gamma, (\gamma\gamma\gamma)$	$(ZZZZ),\ (ZZZ\gamma),\ ZZ\gamma\gamma,\ (Z\gamma\gamma\gamma),\ (\gamma\gamma\gamma\gamma))$

SM Coupling SM Coupling but negligible at LEP2 Zero in SM

Charged Triple Gauge Couplings

- Lorentz invariance and $U(1)_{em}$ $\Rightarrow 7 \gamma WW + 7 ZWW$ independent parameters
- C and P invariance $\Rightarrow 3 \gamma WW + 3 ZWW$ independent parameters
- Charge of W^{\pm} known $\Rightarrow 2 \gamma WW + 3 ZWW$ independent parameters

$$\{\kappa_\gamma,\,\lambda_\gamma,\,g_1^Z,\,\kappa_Z,\,\lambda_Z\}$$

- Use $SU(2) \times U(1)$ operators
- Assume new physics scale is high

$$\kappa_Z = g_1^Z - (\kappa_\gamma - 1) \tan^2 \theta_W$$

 $\lambda_Z = \lambda_\gamma$

 \Rightarrow 3 independent parameters

$$\{g_1^Z,\,\kappa_\gamma,\,\lambda_\gamma\}$$

• Magnetic dipole moment

$$\mu_W = \frac{e}{2m_W} \left(1 + \kappa_\gamma + \lambda_\gamma\right)$$

• Electric quadrupole moment

$$q_W = \frac{e}{m_W^2} \left(\kappa_\gamma - \lambda_\gamma \right)$$

cTGC physics at LEP2

W pair
$$(g_1^Z, \kappa_{\gamma}, \lambda_{\gamma})$$

- qqqq
- $qql\nu$
- *lνlν*

 $\begin{array}{l} \text{Single } \gamma \\ (\kappa_\gamma \ \lambda_\gamma) \end{array}$

cTGC Measurements at LEP2

	ALEPH	DELPHI	L3	OPAL
$WW \rightarrow qqqq$	×	×		×
$WW \rightarrow qql\nu$	×	×	X	×
$WW \rightarrow l\nu l\nu$	×			×
single W	×	×	X	Х
single γ	×			×

	ALEP	PH DI	ELPHI	L3	OPAL
g_1^Z	1.022^{+0}_{-0}	$\begin{array}{c} 0.033\\ 0.033 \end{array}$ 1.00	$2^{+0.041}_{-0.043}$	$0.952\substack{+0.053 \\ -0.048}$	$0.987\substack{+0.037 \\ -0.036}$
κ_γ	0.967^{+0}_{-0}	$0.091 \\ 0.088 $ 0.96	$66^{+0.106}_{-0.106}$	$0.892\substack{+0.099\\-0.095}$	$0.925\substack{+0.087\\-0.082}$
λ_{γ}	0.010^{+0}_{-0}	$0.034 \\ 0.034 $ 0.01	$13^{+0.048}_{-0.045}$	$-0.030^{+0.057}_{-0.054}$	$-0.065^{+0.036}_{-0.035}$

Errors not symmetric in general Some systematic errors correlated

Combine log likelihood curves

Examples of WW Angular Distributions

qqqq

1

 $\cos \theta_{jet}^*$

- Jet assignment ambiguity
- Folded decay distributions

 $qql\nu$

LEP combined cTGC Results

• Theory uncertainty for $\mathcal{O}(\alpha_{em})$ corrections gives largest contribution to systematic error

LEP combined cTGC Results - 3D fits

$$\kappa_{\gamma} = 0.933^{+0.061}_{-0.059}$$

 $\lambda_{\gamma} = -0.067^{+0.036}_{-0.038}$
 $g_1^Z = 1.051^{+0.031}_{-0.032}$

- Consider 'genuine' quartic gauge couplings
- Assume
 - Lorentz invariance
 - $U(1)_{em}$
 - Use $SU(2) \times U(1)$ operators
 - New physics scale is high (dim-6 operators)
 - $\Rightarrow 2 WW\gamma\gamma + 2 ZZ\gamma\gamma + 1 WWZ\gamma$ parameters

 $\{a_0^W,\,a_c^W,\,a_0^Z,\,a_c^Z,\,a_n\}$

• a_n is CP violating

QGC physics at LEP2

$$WW\gamma \ (a_0^W, \ a_c^W, \ a_n)$$

- $qqqq\gamma$
- $qql\nu\gamma$

$$m
u
u \gamma \gamma \, (a_0^W,\, a_c^W)$$

a_0^W, a_c^W and a_n Measurements

 a_0^Z and a_c^Z Measurements

LEP Combined QGC Results

• 95% confidence level limits

	DELPHI	L3	OPAL	
a_0^W	[-0.018, 0.018]	$\left[-0.015, 0.015 ight]$	[-0.054, 0.052]	
a_c^W	[-0.057, 0.030]	[-0.048, 0.026]	[-0.15, 0.14]	
a_n	[-0.16, 0.12]	[-0.14, 0.13]	[-0.61, 0.57]	

expected soon

	L3	OPAL	LEP Combined
a_0^Z	$\left[-0.037, 0.054 ight]$	$\left[-0.045, 0.050 ight]$	[-0.033, 0.046]
a_c^Z	[-0.014, 0.027]	[-0.012, 0.031]	[-0.009, 0.026]

- Assume
 - Lorentz invariance
 - $U(1)_{em}$
 - Bose symmetry

 $\Rightarrow 4 \ Z\gamma\gamma^* + 4 \ Z\gammaZ^* + 2 \ ZZ\gamma^* + 2 \ ZZZ^* \text{ parameters}$

	CP even	\mathbf{CP} odd
$Z\gamma\gamma^*$	h_3^γ, h_4^γ	h_1^γ, h_2^γ
$Z\gamma Z^*$	h_3^Z,h_4^Z	h_1^Z,h_2^Z
$ZZ\gamma^*$	f_5^γ	f_4^γ
ZZZ^*	f_5^Z	f_4^Z

- $qq\gamma$
- $\nu\nu\gamma$

• all 4f decay modes

LEP Combined nTGC Results

 \bullet 95% confidence level limits

h_1^γ	[-0.056, +0.055]
h_2^γ	[-0.045, +0.025]
h_3^γ	[-0.049, +0.008]
h_4^γ	[-0.002, +0.034]

h_1^Z	[-0.13, +0.13]
h_2^Z	[-0.078, +0.071]
h_3^Z	[-0.20, +0.070]
h_4^Z	[-0.05, +0.012]

Conclusion

- Preliminary GC results from LEP (CERN-EP / 2002-091)
- All values consistent with SM
- cTGC
 - Expect reductions in $\mathcal{O}(\alpha_{em})$ systematic
 - CP violating cTGC measurements ongoing
- QGC
 - Combination of a_0^W , a_c^W and a_n
- nTGC
- Future for GC physics
 - Final LEP combinations soon
 - Tevatron, LHC, NLC, ...