Searches for Neutral Higgs Bosons in the MSSM and Interpretations at LEP

On behalf of the LEP Collaborations

- 1. (New) SUSY Scenarios
- 2. New and Updated Searches
- 3. The Interpretations and their Results

Abstracts 158, 209, 210, 248, 320, 742, 746

The MSSM Higgs Phenomenology

- Two Higgs doublets \Rightarrow 5 physical Higgs bosons:
 - CP-conserving models:

■ Tree level: $m_{\rm h,tree} \leq m_{\rm Z}$ but large rad. corrections t, $\tilde{t} m_{\rm h,loop} \approx 1.5 m_{\rm h,tree}$

: The MSSM Higgs Sector Parameters

tree-level parameters				
aneta	ratio of Higgs v.e.v.			
$m_{ m A}$ or m_{H^+}	CP odd Higgs mass or charged Higgs mass			
loop-level parameters				
$ A_q $	strength of trilinear coupling			
$\arg(A_q)$	\Rightarrow CP-violation			
$ m_{ ilde{ extbf{g}}} $	gluino mass parameter			
$rg(m_{ ilde{ extbf{g}}})$	\Rightarrow CP-violation			
μ	Higgs doublet mixing			
$m_{ m SUSY}$	SUSY breaking scale $= m_{\tilde{q}}$			
m_2	SU(2) gaugino mass matrix parameter			

The MSSM Benchmarks

- Too many free parameters to scan them all
- Construct benchmark scenarios, maximising certain effects:
- CP conserving
 - No Mixing: No mixing in the stop-sbottom sector
 - m_h max: Maximum m_h for given $tan\beta, m_A$
 - Large μ : Always kinematically accessible, but $h \rightarrow b\bar{b}$ suppressed
 - New gluophobic: hgg coupling suppressed, bad for LHC ...
 - New small α_{eff} : $h \rightarrow b\bar{b}$ suppressed by cancellation of $\tilde{b} \tilde{g}$ loops
 - **9** 2 more new scans, m_h max derivates
- CP violating
 - Partly new CPX: Mixing of CP- and mass-eigensates
- From Carena et al. hep-ph/0202167 and hep-ph/0009212

The Searches

- Higgsstrahlung and boson fusion (SM like)
 - $e^+e^- \rightarrow Zh; h \rightarrow b\bar{b}, \tau^+\tau^-, Z \rightarrow X$
- Higgsstrahlung (SUSY)
 - New $e^+e^- \rightarrow Zh$; $h \rightarrow Invisible$, $Z \rightarrow q\bar{q}, \ell\ell$ (DELPHI)
 - Partly new $e^+e^- \rightarrow H_2Z$; $H_2 \rightarrow H_1H_1$, $H_1 \rightarrow b\bar{b}$, $Z \rightarrow q\bar{q}$, $\nu\bar{\nu}$ (OPAL)
 - New $e^+e^- \rightarrow H_2Z$; $H_2 \rightarrow H_1H_1$, $H_1 \rightarrow gg, c\bar{c}, \tau^+\tau^-$, $Z \rightarrow \ell\ell, \nu\bar{\nu}$ (OPAL)
 - $e^+e^- \rightarrow Zh$; $h \rightarrow Anything$, $Z \rightarrow \ell \ell$
 - **•** Partly new $e^+e^- \rightarrow Zh$; $h \rightarrow q\bar{q}$, $Z \rightarrow q\bar{q}$
- Pair Production
 - $e^+e^- \rightarrow Ah$; $Ah \rightarrow b\bar{b}b\bar{b}$, $b\bar{b}\tau^+\tau^-$
 - New $e^+e^- \rightarrow H_1H_2$; $H_2 \rightarrow H_1H_1$, $H_1 \rightarrow b\bar{b}$ (just like $Ah \rightarrow AAA \rightarrow 6b$)
- Yukawa search
 - $e^+e^- \rightarrow b\bar{b}h, b\bar{b}A; h, A \rightarrow \tau^+\tau^-$

The Invisible Higgs Search

E The Search for the Invisible Higgs

- Motivation: mSUGRA: $\chi_1^0 > 51$ GeV, cMSSM: $\chi_1^0 > 45 \text{ GeV}$ Higgs might decay invisibly LSP, J e⁻ : LSP. J Ĥ Ζ \mathbf{q},\mathbf{l}^- Ζ e^+ \bar{q}, l^+ Search for
 - acoplanar and acolinear
 leptons with central $p_{\rm mis}$ and
 $m_{\rm Z}$
 - acoplanar jets with E_T

: The Search for $h \rightarrow AA$ with low m_A

In MSSM models, e.g. No Mixing, for small m_A:

- Cover area of $m_{
 m A} < 2 \, m_{
 m b} \, {
 m GeV}$
- Search for
 - A to one jet
 - two A recoiling against a Z

For $2 < m_{\rm A} < 10$ GeV:

A excluded up to upper $m_{\rm h}$ limit of the old FeynHiggs version

E The use of the different searches

Only areas with $\cos^2(\beta - \alpha) \approx 1$ and $e^+e^- → Ah$ kinematically inaccessible are open

Exclusion areas: $m_{\rm h}$ -max

- Use of new FeynHiggs theory prediction:
 - new subleading non-log
 $\mathcal{O}(\alpha^2)$ loops in the top sector
 increase upper mass bound
 by $\approx 4 \text{ GeV}$
- Will be used in LEP combination

Exclusion areas: No-mixing and large μ

ADLO

Philip Bechtle EPS HEP Aachen 07/2003 - p.11/17

Exclusion areas: New Scans

No big surprises for LEP, $h \rightarrow b\bar{b}$ suppression is out of kin. reach

• Mass eigenstates and CP-eigenstates

CP-conserving model: mostly just 1 Higgs h in Higgsstrahlung

CP-violating model: both H_1 and H_2 in Higgsstrahlung

E The use of the different searches

Exclusion areas: Example CP-violating

OPAL preliminary **OPAL** preliminary anβ tanβ MSSM CPX tanß MSSM CPX MSSM CPX 10 10 $arg(A_{tb}) = 60^{\circ}$ Excluded Excluded 10 Theoretically 1 1 Theoretically inaccessible inaccessible 50 50 100 100 m_{H1} (GeV) m_{H1} (GeV) tanβ tanβ **Excluded** MSSM CPX MSSM CPX 10 10 arg(A_{t.b})=30° arg(A_{tb})=0° **Theoretically** Excluded Excluded 1 inaccessible Theoretically Theoretically inaccessible inaccessible 1 120 20 40 60 80 100 140 0 50 50 100 0 100 Λ m_{H1} (GeV) m_{H1} (GeV) m_{H1} (GeV) Different complex phases CPX $90^{\circ} - 60^{\circ} - 30^{\circ} - 0^{\circ}$

In contrast to CP conserving scans: unexcluded regions at very low $m_{\rm H_1}!$

ADLO

The Results

Be aware: Results are based on different scan databases \rightarrow different m_{hmax}

No final LEP combination yet, therefore best limits only:

Limits on the MSSM scenarios					
Scenario	lower limit on $m_{ m h}$	lower limit on $m_{ m A}$	Excluded $ aneta$	Exp.	
	(GeV)	(GeV)			
no mixing	89.8	90.1	$0.5 < \tan\beta < 9.36$	ADLO	
$m_{ m h}{-}{ m max}$	92.0	93.0	$0.7 < \tan\beta < 2.2$	ADLO	
gluophobic	82.0	87.5	$\tan\beta < 6.0$	0	
small $lpha_{ m eff}$	79.0	90.0	$0.44 < \tan\!\beta < 3.6$	0	
$m_{ m h}{-}{ m max}^+$	84.5	84.0	$0.7 < \tan\!\beta < 1.95$	0	
constr. $m_{ m h}{-}{ m max}$	84.0	85.0	0.6 < aneta < 2.2	0	
СРХ	_	<u> </u>	aneta < 2.8	0	
Allowed regions in the "large μ " scenario					
large μ	$90.0 < m_{\rm h} < 107.0$	$87.0 < m_{\rm A} < 200.0$	$ an\beta > 15$	ADLO	

.

.

Conclusion

- The MSSM Higgs search at LEP is still very active
- New Theory:
 - 4 new LHC-motivated scans available
 - New variations of the CPX scenario exist: varying μ , m_{SUSY}
 - New Generation of Benchmark Scan Databases exists with both CPH (subhpole) and FeynHiggs2.0: tanβ exclusion shrinks
- New Searches available
- Larger m_t could further reduce $tan\beta$ exclusion
- Message from LEP to LHC: Don't forget low $tan\beta$
- Question to LEP: Did we really exclude a low mass Higgs ($m_h < 2m_b$) which is not produced in Higgsstrahlung?
- LEP combination to follow asap.

