Beyond the Desert '03

4th International Conference on Physics Beyond the Standard Model Castle Ringberg, 11 June 2003

Searches for LEPTOQUARKS with the OPAL detector

Luca Brigliadori

OPAL Collaboration Bologna University and INFN

- Introduction.
- LQ in e⁺e⁻ interactions :
 - virtual effects;
 - single production;
 - pair production.
- Searches with the **OPAL** detector.
- Conclusions.

Luca Brigliadori OPAL Coll., Bologna University and INFN

• Minimal requirements:

- Baryon (B) and lepton (L) numbers conservation.
- Respect of the SM simmetries $SU(3)_C \otimes SU(2)_L \otimes U(1)_Y$

LQ (RPV q̃)	F=3B+L	${ m Q_{em}}$	λ
$S_0 \; (ilde{d}_R)$	2	-1/3	λ_L,λ_R
$ ilde{S}_0$	2	-4/3	λ_R
S_1	2	2/3 -1/3 -4/3	λ_L
$S_{1/2}$	0	-2/3 -5/3	λ_L,λ_R
$ ilde{S}_{1/2}~(\overline{ ilde{d}}_L,~\overline{ ilde{u}}_L)$	0	1/3 -2/3	λ_L
V_0	0	-2/3	λ_L,λ_R
$ ilde{V}_0$	0	-5/3	λ_R
V_1	0	1/3 -2/3 -5/3	λ_L
$V_{1/2}$	2	-1/3 -4/3	λ_L,λ_R
$ ilde{V}_{1/2}$	2	2/3 -1/3	λ_L

W.Buchmüller, R.Rückl & D.Wyler, Phys.Lett. B191(1987)

 $\lambda_{L,R} \Leftrightarrow \lambda_{(LQ)L,R}^{i,j}$ $i \equiv lepton generation, j \equiv quark generation$

- Within this model :
 - Coupling within a single \implies Three fermions' generation. \implies LQ generations.

Luca Brigliadori OPAL Coll., Bologna University and INFN

Luca Brigliadori OPAL Coll., Bologna University and INFN

Virtual effects in $e^+e^- \rightarrow q\overline{q}$ (2)

OPAL: $\sqrt{s} = 183$ GeV.

Luca Brigliadori OPAL Coll., Bologna University and INFN

- The production x-section depends on the λ couplings (but *not* on the chirality).
- Only 1st gen. LQ coupling to e can be produced.
- LQ with $|Q_{em}| = 1/3$, 5/3 (eu couplings) favoured w.r.t. LQ with $|Q_{em}| = 2/3$, 4/3 (ed couplings).
- After the production: $LQ \rightarrow lq$ $(l = e, \nu)$

Energetic, isolated and high p_t lepton balanced by a hadronic jet.

Luca Brigliadori OPAL Coll., Bologna University and INFN

Single production (2)

- Search for single production events : (Phys. Lett. **B526** (2002) 233).
 - Data sample :

$$\sqrt{s} = 189 - 209 \text{ GeV}; \quad \int \mathcal{L} dt \simeq 612 \ pb^{-1}$$

- Chiral couplings are assumed $\Leftrightarrow \lambda_L \cdot \lambda_R = 0$

$$\implies \beta \equiv B.R.(LQ \rightarrow l^-q) = 0, \ 0.5, \ 1$$

(LQ with $\beta = 0$ not allowed).

channel	$\varepsilon (\%) (M_{LQ} = 80 \div 200 \text{ GeV})$	Exp. Bkg. (MC)	data
eq	10÷50	44.7 ± 14.0	43
νq	30÷60	26.7 ± 8.6	25

 No excess is observed in the data w.r.t. the expected bkg.

 $\Rightarrow \begin{array}{l} \underline{\text{Lower limits}} \ (95\% \text{ C.L.}) \ \text{on } M_{LQ} \\ \Rightarrow & \text{as functions of the } \lambda \ \text{couplings} \\ (\text{exclusion curves in the } (\lambda, M_{LQ}) \ \text{plane}). \end{array}$

Single production (3)

Luca Brigliadori OPAL Coll., Bologna University and INFN

Pair production (1)

- $\sigma = \sigma(M_{LQ}, Q_{em}, I_3, \lambda)$. The *t/u*-channel contribution (λ dependent) exists only for LQ coupling to electrons.
- Advantages (w.r.t. single production) :
 - $\sigma \geq \mathcal{O}(1\text{pb})$ @LEP2 even for small values of the λ couplings to fermions (< 10⁻¹).
 - Any LQ in the model could be produced.
- <u>Drawback</u> :
 - Lower kinematic limit for M_{LQ} $(\sqrt{s}/2 \iff \sim 100 \text{ GeV @LEP2}).$

Pair production (2) • $LQ \rightarrow lq, \ \overline{LQ} \rightarrow \overline{l'q'}$ $\downarrow \downarrow$ Three possibile final states for each generation $\Leftrightarrow -l^{\pm}l^{-}q\overline{q}$ $-l^{\pm}\nu_{l}q\overline{q}$ $\downarrow l = e, \mu, \tau$

For a given LQ the fraction of events falling in each final state depends on β ≡ B.R.(LQ → l⁻ + q) (⇒ 1 − β ≡ B.R.(LQ → ν + q'))

• Signal events:

- High multiplicity (hadronic jets).
- High fraction of visible energy.
- Energetic and isolated leptons.
- Main bkg: W⁺W⁻, We ν (l[±] ν_1 q \overline{q}) Z⁰Z⁰ (l⁺l⁻q \overline{q} , $\nu_1\nu_1$ q \overline{q})

Luca Brigliadori OPAL Coll., Bologna University and INFN

Pair production (4)

- Search for pair-production events : (CERN-EP/2003-021 30th April 2003, submitted to Eur. Phys. J. C)
 - Assumption : t/u-channel contribution is negligible ($\lambda < O(10^{-2})$ for 1^{st} gen. LQ).
 - Data sample :

$$\sqrt{s} = 189 - 209 \text{ GeV};$$

$$\int \mathcal{L} \mathrm{d}t \simeq 596 \ pb^{-1}$$

channel	$(\mathbf{M}_{\mathbf{LQ}} = \begin{array}{c} \varepsilon \ (\%) \\ 50 \div 102 \text{ GeV} \end{array})$	Exp. Bkg. (MC)	data
$e^+e^-q\overline{q}$	26÷56	$12.8^{+5.2}_{-4.8}$	20
$\mu^+\mu^- q\overline{q}$	31÷68	$8.7^{+3.5}_{-2.8}$	4
$ au^+ au^- \mathrm{q}\overline{\mathrm{q}}$	17÷35	$38.0^{+7.4}_{-7.0}$	37
$e^{\pm}\nu q \overline{q'}$	9÷36	$13.7^{+6.3}_{-5.9}$	13
$\mu^{\pm}\nu q \overline{q'}$	11÷43	$24.5^{+5.4}_{-5.0}$	26
$ au^{\pm} u q \overline{q'}$	2÷25	$36.0^{+8.5}_{-8.3}$	35
$\nu\nu q\overline{q}$	9÷38	$22.8^{+4.4}_{-3.7}$	28

 No significant excess is observed in the data w.r.t. the bkg expected from the Standard Model.

> <u>Lower limits</u> (95% C.L.) on M_{LQ} as functions of $\beta \equiv B.R.(LQ \rightarrow l^-q)$ (Likelihood Ratio method, Experimental errors included following Nucl. Instr. and Math. **A434** (1990) 435)

Nucl. Instr. and Meth. A434 (1999) 435).

Pair production (5)

•	Lower	limits	on	M_{LQ}	(GeV)	: summary
---	-------	--------	----	----------	-------	-----------

LQ	$Q_{e.m.}$	eta	1^{st} gen.	2^{nd} gen.	3^{rd} gen.
S_0	-1/3	[0.5,1]	69(**)	79(**)	45(*)
$ ilde{S}_0$	-4/3	1	99	100	98
	+2/3	0	97	97	97
S_1	-1/3	0.5	69	79	45(*)
	-4/3	1	100	101	99
G	-2/3	[0,1]	94(**)	94(**)	93(**)
$S_{1/2}$	-5/3	1	100	100	98
~	+1/3	0	89	89	89
$\tilde{S}_{1/2}$	-2/3	1	97	99	96
V_0	-2/3	[0.5,1]	99(**)	99(**)	97(**)
$ ilde{V}_0$	-5/3	1	102	102	101
	+1/3	0	101	101	101
V_1	-2/3	0.5	99	99	97
	-5/3	1	102	102	101
TZ.	-1/3	[0,1]	99(**)	99(**)	98(**)
$V_{1/2}$	-4/3	1	102	102	101
~	+2/3	0	99	99	99
$\overline{V}_{1/2}$	-1/3	1	101	101	99

(*): LEP1, (**): Minimum value $\forall \beta \equiv B.R.(LQ \rightarrow l^-q)$

Luca Brigliadori OPAL Coll., Bologna University and INFN

Conclusions

- Leptoquarks could be directly produced or virtually exchanged in e^+e^- collisions.
- Searches for deviations from the Standard Model expectations due to LQ have been performed using the data collected by the OPAL experiment at the highest centre-of-mass energies reached by the LEP collider.
- No significant evidence for any deviation has been found.

• The results improve existing lower limits on M_{LQ} in the region of small β and enlarge exclusion regions in the (λ, M_{LQ}) plane.