Unbiased gluon jets from e^+e^- annihilations

using the boost algorithm

Simone Campana

University of California <u>Riverside</u>

OPAL Collaboration, CERN

email: simone.campana@cern.ch

Gluon Jet definition · · ·

 <u>Theoretical calculations</u>: define gluon jet multiplicity INCLUSIVELY

unbiased gluon jet

- $\rightarrow N_g$: Particles in hemisphere of gg ($q\bar{q}$) color singlet: UNBIASED gluon jet
 - Experimental analysis: gluon jet often defined using a jet reconstruction algorithm (Jet Finder)
- $\rightarrow N_g$: Particles associated to the jet by the algorithm: **BIASED** gluon jet
- \rightarrow Multiplicity strongly dependent from jet finder used
- \rightarrow Comparison to theory ambiguous

Purpose of the present study is · · ·

BOOST algorithm, proposed by the Lund theory group (P. Eden, G. Gustafson, JHEP **9809** (1998) 015) to reconstruct unbiased gluon jets

- test if provides a good description of unbiased gluon jets.
- ••• measure unbiased gluon jet properties at different energies with this method:

- Charged multiplicity distribution : $P(n_{qluon}^{ch.})$

- Mean charged multiplicity : $\langle n_{gluon}^{ch.} \rangle$
- Factorial moments : $F_{l,gluon} = \frac{\langle n(n-1)\cdots(n-l-1)\rangle}{\langle n\rangle^l}$
- Fragmentation function : $\frac{1}{N} \frac{dn_{gluon}^{ch.}}{dx_E}$, $x_E = E_{part}/E_{jet}$

compare the results with theoretical predictions.

- qqqg event symmetric w.r.t. gluon jet direction (a):
 2 independent color dipoles
- Boost each dipole (b) to its back-to-back frame
- Back-to-back dipoles can be <u>combined</u> to yield the dipole structure of <u>gg</u> event (c), with the condition:

$$E_g^* = E_g' \sin\left(\theta_{qg}/2\right)$$

Boost Algorithm

- Reconstruct a three-jet event configuration in a multihadronic event and identify the gluon jet.
- Apply Lorenz **boost** to the event. In the new frame:

$$\theta_{qg} = \theta_{\overline{q}g} = \theta$$

$$(\mathbf{d})$$

$$\theta_{\overline{q}g} = \theta_{\overline{q}g} = \theta$$

- Multiplicity of gluon jet: number of particles lying inside the cone-like region defined by the bisectors of θ_{qg} and $\theta_{\bar{q}g}$
- Energy scale of gluon jet:

$$E_g^* = p_{\perp,gluon} = \frac{1}{2}\sqrt{\frac{s_{qg}s_{\bar{q}g}}{s}}$$

*p*_{⊥,*gluon*} : Lund definition of gluon transverse momentum.
 Experimentally shown to be appropriate scale:
 OPAL Collaboration **E.P.J. C22** (2002)

Analysis Method

- Analysis based on multihadronic events collected by $\underline{\text{OPAL}}$ at the Z^0 peak
- 3-jet configuration <u>forced</u> in each event using κ_{\perp} jet finder
- Energy of jets <u>recalculated</u> imposing energy and momentum conservation and <u>massless</u> kinematic
- Jets ordered in decreasing energy
- **Identify** gluon jet:
 - Jet 1 always assumed to be a quark jet
 - Perform **B-tagging** on jet 2 and 3
 - Only events with one tagged quark jet among the lower energy jets are retained
 - The remaining lower energy jet is identified as <u>GLUON</u>
- Data <u>corrected</u> for acceptance, resolution, ISR, gluon mis-tagging ..

Final Event Sample

Bin in E_g^{st} (GeV)	Number of jets	$\langle E_g^* angle$ (GeV)	Purity (%)
5.0–5.5	4022	$5.25 \pm 0.01 \pm 0.01$	$88.8 \pm 0.4 \pm 1.4$
5.5–6.5	6652	$5.98 \pm 0.01 \pm 0.01$	$87.3 \pm 0.3 \pm 1.6$
6.5–7.5	5017	$6.98 \pm 0.01 \pm 0.01$	$84.2 \pm 0.4 \pm 2.3$
7.5–9.5	7390	$8.43 \pm 0.01 \pm 0.01$	$79.2 \pm 0.3 \pm 2.2$
9.5–13.0	1713	$10.92 \pm 0.02 \pm 0.04$	$94.5 \pm 0.3 \pm 3.6$
13.0–16.0	485	$14.24 \pm 0.04 \pm 0.05$	$86.1 \pm 0.9 \pm 4.2$
16.0–20.0	117	$17.72 \pm 0.11 \pm 0.21$	$73.9 \pm 2.5 \pm 8.9$
5.0–20.0	25396	$7.32 \pm 0.01 \pm 0.07$	$85.1 \pm 0.2 \pm 2.6$

- About 25000 events in the final sample
- Overall gluon jet purity : 85%
- E_q^* energy range divided in 7 bins
- To all those events the <u>BOOST</u> algorithm has been applied

Test of Boost Algorithm: Multiplicity

Test of Boost Algorithm: other issues

• <u>Jet finder</u> dependence:

• We assume <u>massless</u> jets (partons) but 80% of the examined gluon jest arise from $b\overline{b}$ initiated events:

Test of Boost Algorithm: summary

- We tested the boost algorithm using Herwig Monte Carlo
- We compared results of Boost method with unbiased gluon jets from color singlet gg events
- <u>MULTIPLICITY</u> :

 \rightarrow good agreement for $E_q^* > 5 \ GeV$

 \rightarrow measurement of multiplicity distributions in seven intervals of energy between 5.25 and 17.72 GeV

• FRAGMENTATION FUNCTION :

 \rightarrow good agreement $E_g^* > 14~GeV$

 \rightarrow measurement of fragmentation functions in two intervals at 14.24 and 17.72 GeV

• Virtually no jet finder dependence observed

Results : mean multiplicity

- Results <u>consistent</u> with previous measurements of unbiased gluon jets
- Most precise results for $5.25 < E_q^* < 20 GeV$
- Theoretical expressions successfully fitted to experimental data:

ightarrow 3NLO : takes into account the running nature of $lpha_S$

 \rightarrow Fixed α_S : incorporates more accurately higher order effects

Results : factorial moments

- First measurement of F_2 and F_3 for unbiased gluon jets over an energy range
- <u>3NLO expression</u> fitted to three highest energy data points:
 - \rightarrow reasonable description of $F_{2,gluon}$ and $F_{3,gluon}$ energy evolution above 14 GeV.
 - \rightarrow lower energies: predictions lie <u>below</u> the <u>data</u>.
 - \rightarrow discrepancy at low energies possibly due to

hadronization effects

- Fixed α_S prediction :
 - ightarrow general agreement with the data for $F_{2,gluon}$
 - (but fairly large theoretical uncertainties)
 - \rightarrow lies above the data for $F_{3,gluon}$ except for $E_a^* \approx 40 GeV$

Results : Multiplicity Ratio

• Quark contribution: inclusive $e^+e^- \rightarrow q\bar{q}$ data at the same gluon energy scale E_g^* , corrected (Herwig) for small energy difference and heavy quark contribution.

- **<u>3NLO</u>** and fixed α_S are 15-20% above the data
- **Dipole Model** is about 10-15% above the data
- <u>Numerical solution</u> of QCD evolution equation well describes the data over the all energy range
- Energy conservation and phase space limits are important issues for those descriptions

with the data.

HOWEVER

• Large hadronization effects ...

Results : Fragmentation Function

Results : Fragmentation Function

 The data have been <u>fitted</u> using the <u>DGLAP</u> evolution equation:

 \rightarrow valid at NLO in the \overline{MS} scheme

- Evolution performed in conjunction with our measurements of unbiased gluon and quark jet fragm. function at 40.1 and 45.6 Gev
- The fit provides a <u>good description</u> of the measurements and yields a result for the strong coupling constant:

$\alpha_s(m_Z) = 0.128 \pm 0.008(stat) \pm 0.015(syst)$

 The result is <u>consistent</u> with the world average and provides a unique <u>consistency check</u> of QCD

Conclusions

- Most precise measurement of unbiased gluon jet mean multiplicity in the range $5 < E_g^* < 20 \; GeV$
- First measurement of $\underline{F_2}$ and $\underline{F_3}$ for unbiased gluon jets over an energy range.
- First measurement of strong coupling constant from unbiased gluon jet fragmentation function

In general, we found <u>overall</u> good agreement between data and theory.

Test of Boost Algorithm: Multiplicity Distribution

Results based on the "Lund scale" preferred over the one based on the "Leningrad scale" :

- The Leningrad definition yields results inconsistent with the Monte Carlo prediction
- The MC has been shown to well describe unbiased gluon jets in other studies
- The Leningrad definition results in apparent inconsistency with previous measurements

Analysis Method

- Analysis based on 3.13M multihadronic events collected by <u>OPAL</u> at the Z^0 peak (\pm 3GeV) between 1993 and 2000 (3 dim. readout of silicon micro-vertex)
 - \rightarrow Standard multihadronic selection applied
 - \rightarrow High efficiency and almost no background contamination
- 3-jet configuration forced in each event using κ_{\perp} jet finder
- Energy of jets <u>recalculated</u> imposing energy-momentum conservation and <u>massless</u> kinematic
- Jets ordered in decreasing energy (Jet 1 \rightarrow highest energy)
- B-tagging procedure applied to the three jets:
 - "Good-quality" tracks selected (momentum greater than 1GeV/C and maximum distance of closest approach 0.3 cm with a maximum uncertainty of 0.1 cm on this quantity)
 - Displaced secondary vertex reconstructed if contains more than 3 charged tracks
 - For jets with secondary vertex, the signed decay length \underline{L} and its error σ_L are calculated

- Jet 1 always assumed to be a quark jet
- Jet 2 or 3 tagged as <u>quark jets</u> only if $L/\sigma_L>3$
- Only events with one tagged quark jet among the lower energy jets are retained
- The remaining lower energy jet is identified as <u>GLUON</u>

• Measure
$$E_g^* = rac{1}{2} \sqrt{rac{s_{qg} s_{ar{q}g}}{s}}$$

- Require $E_g^* > 5GeV$ (well defined gluon jet)
- Impose cut on k_{jet} of both quark jets, where k_{jet} :

$$k_{jet} = E_{jet} * \sin(\theta_{min}/2) > 8 \ GeV/c$$

 θ_{min} : smallest of the angles with the other two jets.

 \rightarrow Improves the "quality" of three jet event

 \rightarrow Improves the purity of gluon jet

- $5 < E_g^* < 9.5 GeV \rightarrow$ Gluon jet purity <u>above</u> 80% : <u>OK</u>
- $E_g^* > 9.5 GeV \rightarrow$ Gluon jet purity <u>below</u> 80% : <u>RETAG</u> Quark jet with must satisfy tighter conditions on L/σ_L :

$$\rightarrow 9.5 < E_g^* < 16 GeV$$
 : $L/\sigma_L > 3$ for jet 1 and 2, $L/\sigma_L > 5$ for jet 3

$$\rightarrow E_g^* > 16 GeV : L/\sigma_L > 5$$

