

Recent b physics results from OPAL

David Waller, Carleton University for the OPAL Collaboration

> EPS Conference HEP2003 Heavy Flavour Physics Session Aachen, Germany 17 July 2003

Outline

- $Br(b \to D^{**0} \ell \, \overline{\nu}_{\ell} X)$
 - Object, motivation
 - Method
 - Results
- Charm counting in beauty decays
 - Object, motivation
 - Method
 - Results
- Conclusions

Analyses of Z⁰ data!

Semileptonic decay of b hadrons to orbitally excited D mesons

Motivation

- Measure $Br(b \rightarrow D^{**0} \ell \, \overline{\nu}_{\ell} X)$
- D^{**0} are L=1 orbitally excited charm mesons.
 - Measure narrow $J_q = 3/2$ states (D_1^0 , D_2^{*0}).
 - Wide J_q= 1/2 states not visible with statistics.
- Reconcile difference between measured inclusive and exclusive semileptonic branching ratios.
- Reduce uncertainty in $|V_{cb}|$.
- Test HQET predictions.

Semi-leptonic decay of b hadrons to orbitally excited D mesons: Method

- Identify high *p* lepton (μ, e)
 high efficiency and purity for
 - p_µ> 3 GeV/c, p_e> 2 GeV/c
- Exclusively reconstruct D^{**0}

$$D^{**0} \longrightarrow D^{*+} \pi^{**-} \longleftarrow D^{0} \pi^{+}_{slow} \longleftarrow K^{-}\pi^{+}(\pi^{+} \pi^{-}) \longleftarrow$$

- Background cuts to remove fake π^{**-} (π from fragmentation)
 - main background from $b \rightarrow D^{*0} \ell \, \overline{\nu}_{\ell} X$ decays plus fake π^{**-}
 - ANN (*p*, *p*_T, *d0/σ*_{d0}) to select π^{**-}

D^{**0} – D^{*+} mass difference

Combine $D^{0\rightarrow} K\pi$ and $K3\pi$ channels to reduce uncertainty due to background.

Unbinned ML fit to determine number of D_1 and D_2^* events (B.-W. \otimes Gaussian).

Number of wrong sign and right sign background events fit simultaneously.

$$Br(b \to \overline{B}) \times Br(\overline{B} \to D_1^0 \ell^- \overline{\nu} X) \times Br(D_1^0 \to D^{*+} \pi^-)$$
$$= (2.64 \pm 0.79 (\text{stat}) \pm 0.39 (\text{syst})) \times 10^{-3}$$

$$Br(b \to \overline{B}) \times Br(\overline{B} \to D_2^{*0}\ell^{-}\overline{\nu} X) \times Br(D_2^{*0} \to D^{*+}\pi^{-})$$

$$\leq 1.4 \times 10^{-3} (95\% \text{ C.L.})$$

Charm counting in b decays: Object and Motivation

• **Object**:(1) measure $Br(b \rightarrow DDX)$ with inclusive method.

(2) use $Br(b \rightarrow D\overline{D}X)$ to calculate average number of *c* plus anti-*c* quarks per *b* quark decay, n_c .

$$n_{c} = 1 + Br(b \rightarrow D\overline{D}X) + Br(b \rightarrow (c\overline{c})X) - Br(b \rightarrow \text{no charm})$$

$$\checkmark \qquad \checkmark \qquad \checkmark$$
Use PDG values

• **Motivation**: compare experimental value of *n_c* to theoretical prediction:

 n_c = 1.20 ± 0.06 (Neubert & Sachrajda)

Charm counting in b decays: Inclusive method

- Differentiate b→1 charm from b→2 charm using topology.
- Impact parameter significance, **S** (= d_0/σ_{d0}), of tracks from D decay greater than S of tracks from b decay.
- In b→2 charm most tracks from D decay.
- Combine S of tracks in jet into single joint probability variable: P_J

Charm counting in b decays: Probability Density Functions and Fits

Charm Counting in b decays: Results

- $Br(b \rightarrow DDX)$ measured for each year separately.
- Results for each year combined \rightarrow consistent.

 $Br(b \rightarrow D\overline{D}X) = 10.0 \pm 3.2(\text{stat})^{+2.4}_{-2.9}(\text{det})^{+10.4}_{-9.0}(\text{phys})$

- Two dominant systematics from physics modelling:
 - charged particle multiplicity in fragmentation (±6.2%)
 - neutral K and π multiplicities in D decays ($^{+7.2}_{-4.6}$ %)
- $Br(b \rightarrow D\overline{D}X)$ combined with $Br(b \rightarrow no charm)$ and $Br(b \rightarrow (c\overline{c})X)$ to yield n_c .

$$\boldsymbol{n_c} = 1.12^{+0.11}_{-0.10}$$

Conclusion

• Results of these recent OPAL charm counting and $Br(b \rightarrow D^{**0} \ell \,\overline{\nu_{\ell}} X)$ analyses consistent with previous measurements and theoretical predictions.

Key variables

Cross check of results

 α angle between $\pi^{**\text{-}}$ and $\ \pi_{\text{slow}}$ in rest frame of D*+.

Signal peaks at higher $|\cos(\alpha)|$ while background is flat.

Extra slide: charm counting

