Rapidity gaps in gluon jets/ color reconnection at LEP

M. Giunta

University of California, Riverside OPAL Collaboration

XXXVIIIth Recontres de Moriond QCD And High Energy Hadronic Interactions

March 23rd 2003

Outline

- Rapidity gaps & color reconnection Why focus on rapidity gaps in gluon jets?
- Color reconnection models Rathsman-CR, Ariadne-CR, Herwig-CR
- Analysis strategy
- Results from OPAL
- Results from ALEPH
- Summary & conclusions

Rapidity gaps & CR

Rapidity :

$$= \frac{1}{2} \ln \left(\frac{E + p_{\parallel}}{E - p_{\parallel}} \right)$$

where:

E = energy of the particle

 \mathcal{Y}

 $p_{\parallel} =$ 3-momentum component w.r.t. event, thrust or jet axis

Rapidity gap event: event in which two populated regions in rapidity are separated by an empty region

Color reconnection (CR): rearrangement of the color structure of an event from its simplest configuration

 \Rightarrow string segments can either cross or appear as disconnected entities whose endpoints are gluons $(1/N_C^2$ suppression; $N_C = 3$, number of colors)

 \Rightarrow in events with an isolated gluonic system a rapidity gap can form between particles coming from the isolated segment and the rest of the event

 \Rightarrow rapidity gaps in gluon jets provide a sensitive means to search for color reconnection effects

Ariadne-CR model

G. Gustafson, J. Häkkinen, Z. Phys. C64 (1994) 659 L. Lönnblad, Z. Phys. C70 (1996) 107

the three different existing implementations (Ar-1, Ar-2 and Ar-3) are equivalent at the $Z^0\,$

Rathsman-CR model

J. Rathsman, Phys. Lett. B452 (1999) 364 implemented in the framework of Pythia 5.7. The color reconnection probability is proportional to the non-perturbative factor R_0 (fixed to 0.1)

Herwig-CR model

G. Corcella et al., JHEP 0101 (2001) 010

^aproposed for glueball searches by P. Minkowski, W. Ochs, Phys. Lett. B485 (2000) 139

OPAL selection (I)

[new note OPAL-PN-518, Mar. 2003]

- use OPAL $Z^0 \rightarrow hadrons$ events collected from 1993 to 1995 ($\sim 2,722,000$ events)
- choose a relatively complete and uncorrelated set of distributions sensitive to the global features of hadronic events (Sphericity, Aplanarity, $-\ln(y_{34})$, y_T) and evaluate the global χ^2 (81 bins) for the different models

without CR	global χ^2	with CR	global χ^2
Ariadne 4.11	36.9	Ariadne-CR	32.4
Jetset 7.4	200.7	Rathsman-CR	243.5
Herwig 6.2	127.9	Herwig-CR	151.6

The uncertainties are dominated by systematics

These χ^2 are intended to be used only as a relative measure of the description of the data by the models

The χ^2 values for Ariadne are smaller because this model is used to correct the data

 \Rightarrow the models with color reconnection yield an equally good overall description of global event properties as the corresponding models without reconnection

- to select gluon jets
 - force three jets in all the events using Durham
 - identify gluon jet using anti b-tagging technique
 - to select well defined gluon jets require $K_{jet} = E_{jet} \sin(\theta_{min}/2) > 7 \text{ GeV}$ and to increase the purity $E_{jet} < 35 \text{ GeV}$
 - \Rightarrow 12611 gluon jets selected with purity $\approx 95\%$ (energy range: $10 < E_g < 35$ GeV)

OPAL selection (II)

 choose the values to define a rapidity gap (using all particles) by looking at the ratio:

OPAL detector level results (II)

- \Rightarrow Rathsman-CR, Ariadne-CR: large excess of entries at $Q_{leading} = 0$
- ⇒ AGAIN a consequence of events with an isolated gluonic system in the leading part of the gluon jets
- \Rightarrow Jetset and Ariadne: predictions 15-20 % low for the $Q_{leading} = 0$ bin

BUT

there is no spiking behaviour in the data for the $n_{leading}^{ch}$ distribution, i.e. no clear color reconnection signal \rightarrow we cannot conclude this is due to color reconnection

(? some other problem in Jetset and Ariadne not related to color reconnection?)

Correction & systematics

Question:

can the Rathsman-CR or Ariadne-CR model be tuned to describe our data while continuing to provide a reasonable description of inclusive Z^0 decays?

 \Rightarrow correct the distributions to the hadron level

- define $\Delta Q_{leading}^{MC-data}$: difference between MC prediction and data for the $Q_{leading} = 0$ bin
- vary the principal parameters of the models to try to obtain simultaneously $\Delta Q_{leading}^{MC-data} \approx 0$ and the correct result $\langle n_{ch.} \rangle = 21.15$ for inclusive Z^0 decays
- check if the global shape variables are still well described (\rightarrow global χ^2)

Systematics :

- model dependence
 - Jetset, Ariadne and Herwig-CR used to determine the correction factors
- Charged tracks alone used for the data and MC detector level samples
- particle selection
- gluon jet identification

OPAL hadron level results

• a clear spike is predicted at $n_{leading}^{ch} = 4$ by Herwig-CR

Rathsman-CR: try variation of the CR suppression factor. For

 $R_0 = 0.0085 \pm 0.0075(stat.) \pm 0.0087(syst.)$

describes the data. Result consistent with zero (\rightarrow no CR)

OPAL: Rathsman-CR re-tuning

OPAL: Ariadne-CR re-tuning

Example of effects of the retuning

Due to the large values of Q_0 or $p_{T,min}$ in the re-tuned models, there is a severe truncation of events with multi-jet structure in disagreement with the data

ALEPH selection

- use ALEPH $Z^0 \to hadrons$ events collected in 1994 ($\sim 1,660,000$ events)
- parameter values used for the different Monte Carlos (Jetset, Rathsman, Ariadne and Ariadne-CR) obtained from fits to global quantities
- to select gluon jets
 - find 3 jet events using Durham with fixed $y_{cut} = 0.01$

- identify gluon jet using energy ordering : $x_1 > x_2 > x_3$ (x_i = jet energies re-calculated using massless kinematics)

- to increase purity require $z = \frac{1}{\sqrt{3}}(x_2 x_3) > 0.15$
- \Rightarrow 264000 gluon jets selected with purity $\approx 79\%$ (energy range: $5 < E_3 < 18$ GeV)
- to define the rapidity gap
 - use charged particles only
 - require $y_{min} = 1.5$
 - \Rightarrow purity of the final 34167 gluon jets $\approx 62\%$
- for comparison, the following are also analysed:
 - quark jets from 2-jet events
 - jets 1 and 2 from 3-jet events

ALEPH Rathsman results

- results shown at the detector level
- distributions normalized to the number of jets with a rapidity gap

- excellent description of quark jets
- gluon jets: Rathsman gives a too strong effect; Jetset predicts too few ($\approx 10\%$) neutral jets

consistent with the OPAL result for Jetset

ALEPH Ariadne results

similar results for Ariadne

Further checks

- 1. different values for $y_{min} = 1.7, 2.0$
- 2. gap defined using charged+neutral particles
- 3. require z < 0.15 in the 3-jet sample
- \Rightarrow qualitatively same conclusions

Summary & conclusions

- results by the OPAL and ALEPH collaborations have been presented
- models with color reconnection predict a large excess of gluon jets with a rapidity gap
- n^{ch}_{leading} and Q_{leading} gluon jet distributions are very sensitive to CR effects (first presented in OPAL-PN515)
- the Rathsman-CR and Ariadne-CR models predict large spikes at $n_{leading}^{ch} = 2, 4$ and $Q_{leading} = 0$ compared to the data
- the Jetset 7.4 and Ariadne 4.11 predictions for $Q_{leading} = 0$ are too low. This may be a problem in these models not related to CR since the data do not exhibit spiking at $n_{leading}^{ch} = even$, which is the most unambiguous signal for reconnection
- a tuning of the models with color reconnection in order to describe the n^{ch}_{leading} and Q_{leading} distributions results in a severe degradation of the description of the global features of the event

Color reconnection as currently implemented in Rathsman-CR and Ariadne-CR is strongly disfavored

 \Rightarrow no definite conclusion concerning Herwig-CR