Gluon splitting to bb & B fragmentation function Measurement

OPAL detector @ LEP

Hagar Landsman Technion Israel Inst. Of Technology

<u>Outlines</u>

- Introduction to gbb
- gbb at OPAL
- gbb at ALEPH, DELPHI, SLD
- b Fragmentation function at OPAL

Theoretical predictions (gbb)

gbb

4

Why (gbb) ? ? ? ?

- gbb larger at higher energies .
- QCD TEST Sensitive to b quark mass and strong coupling constant.
- Main uncertainty source in Rb ($\Delta R_b(g_{QQ}) \sim 0.00028$) and in other EW measurements.

Recent analyses: gbb

8	ALEPH	CERN-EP-98-103
Â.	DELPHI	CERN-EP-99-081 CERN-PPE-97-39
	OPAL	CERN-EP-2000-123
	SLD	SLAC-PUB-8737 / hep-ex/0102002

Experimental signature

Four jets, two of jets (low-energy, close in phase space) with b decay products

Strategy

- 1. Select hadronic Z⁰ decays
- 2. Look for 4 jet events
- 3. Choose two jets to have originated from gluon
- 4. b-tagging

Gluon splitting to ccbar

gbb

•gluon splitting to bbbar with primary !b quarks

Two primary b quarks (bbxx)

• Other 4 jet events (qqxx)

- Double bremsstrulong
- Triple gluon vertex

 gluon splitting to bbbar with primary b quarks

q=udsc x=guds

both $g \rightarrow$ bb jets must have $1/\sigma > 3$.

+ DATA

— МС

🔲 qq̄xx (q=udsc,x=guds)

🖾 bbxx (x=guds)

- $\boxplus g \rightarrow c\bar{c} \text{ (primary udscb quark)}$
- \boxtimes g \rightarrow bb (primary udsc quark)
- $\blacksquare g \rightarrow b\overline{b} \text{ (primary b quark)}$

Further B-tagging

🔶 DATA

Five inputs:

- Decay length significance
- Decay length
- Number of tracks in secondary vertex
- Reduced decay length
- · X_D

🔲 qq̄xx (q=udsc,x=guds)

🖾 bbxx (x=guds)

- $\boxplus g \rightarrow c\bar{c} \text{ (primary udscb quark)}$
- $\square g \rightarrow b\overline{b}$ (primary udsc quark)

 $\blacksquare g \rightarrow b \overline{b} \text{ (primary b quark)}$

a,c). btag in 'other' 2 jets

b,d). no btag in 'other' 2 jets

Events selected - step by step

gbb OPAL

3	N N	Number of events			Selection		
			sig	nal	efficie	iciencies	
	data	bgnd	զգեն	<u> </u>	€qqbb	€bbbb	
The four-jet selection); ;;	10 10			10 000 0 10 0		
Total four-jet	443334	438191	4263	880	52.72%	56.95%	
"2+2"	235201	238500	1901	373	23.51%	24.15%	
"3+1"	208133	199691	2362	507	29.21%	32.80%	
Event selection in Class "2+2	7						
$(l/\sigma)_2 > 3$	613	596.2	51.2	17.8	0.63%	1.15%	
$NN_1 + NN_2 > 1.7$	39	25.8	8.6	3.0	0.11%	0.20%	
Sample A	14	6.3	1.2	2.2	0.02%	0.15%	
Sample B	25	19.5	7.4	0.8	0.09%	0.05%	
Event selection in Class "3+1"	7						
$(l/\sigma)_2 > 3$	359	310.6	71.4	22.3	0.88%	1.31%	
$NN_1 + NN_2 > 1.1$	153	92.8	42.9	13.2	0.53%	0.85%	
Sample C	44	40.1	6.7	9.6	0.08%	0.62%	
Sample D	109	52.7	36.2	3.6	0.45%	0.23%	
The dedicated bbbb selection			11. A.I.		565 20		
$(l/\sigma)_3 > 3$	628	642.8	18.0	55.8	0.22%	3.61%	
temove overlap with A-D	589	604.6	14.0	46.0	0.17%	2.97%	
Sample E	29	21.1	0.3	9.1	0.004%	0.59%	
Selected (A–E)	221	139.7	51.8	25.3	0.64%	1.64%	

Aleph's gbb

3.7 M hadronic events

- choose 4 jet events (Durham Ycut=0.006)
- Pick two jets with smallest likelihood to have originated from the primary vertex.
- Use angular separation and jet momentum to reject $z \rightarrow bb$

222 events ε_{gbb} =0.958±0.055% ε_{gcc} =0.0029 ±0.0002% ε_{other} =0.023 ±0.003%

$$gbb = \frac{f_{d} - (1 - g_{cc}) \mathcal{E}_{other} - g_{cc} \mathcal{E}_{gcc}}{\mathcal{E}_{gbb} - \mathcal{E}_{other}}$$

 $2.77 \pm 0.42 \pm 0.57 \times 10^{-3}$

Delphi's gbb (i) Select 4 jet event (Durham Y_{cut}=0.017)

1.4 M hadronic events

• Choose 2 jets with smallest angle between them as gluon candidates.

- use impact parameter to calculate probability for a jet to containe only tracks coming from the primary vertex.
- reject events where selected jets are the most energetic ones.
- rapidity, α_{12-34}

22 events selected 10.9 \pm 1.4 background 2.0 \pm 0.9 gcc

2.1 ±1.1 ±0.9 x10⁻³

Delphi's gbb (ii) (based on 4b)

- Force events to 3 jets (Durham Ycut>0.006) 2.0 M hadronic events
- btag in all 3 jets (Decay length sig., jet mass, rapidity and more)
- \cdot calculate g_{4b}

gbb

Delphi

140 events ε_{4b} =3.16±0.11% ε_{bbcc} =0.321±0.023% ε_{bb} =0.0164±0.0006% ε_{other} =0.00002±0.0002%

 $g_{4b} = \frac{f_d - \mathcal{E}_{other} - \mathcal{R}_b \left[\mathcal{G}_{cc} (\mathcal{E}_{bbcc} - \mathcal{E}_{bb}) + \mathcal{E}_{bb} \mathcal{E}_{other} \right]}{\mathcal{E}_{4b} - \mathcal{E}_{bb}} = \frac{-6.0 \pm 1.9 \pm 1.4 \times 10^{-4}}{1.9 \pm 1.4 \times 10^{-4}}$

•Extract gbb
gbb=
$$R_{4b} \times R_{th}$$
 $R_{th} = \frac{Br(Z \rightarrow qqg, g \rightarrow bb)}{Br(Z \rightarrow bbg, g \rightarrow bb)} = 5.457 \pm 0.008$

SLD's gbb

0.4 M hadronic events

- choose 4 jet events (Durham Ycut=0.005)
- Pick two jets closest in angle.
- Btag those jets: Decay length
- ANN (α_{12-34} , jet energy, $M_{\rho\tau} = \sqrt{M_{\tau x}^{2} + \rho_{\tau}^{2}} + |\rho_{\tau}|$...)

79 events

 $\begin{array}{l} \epsilon_{gbb} \texttt{=5.28} \pm 0.09\% \\ \epsilon_{gcc} \texttt{=0.165} \pm 0.018\% \\ \epsilon_{other} \texttt{=0.00967} \pm 0.00038\% \end{array}$

$$gbb = \frac{\boldsymbol{f}_{d} - (1 - \boldsymbol{g}_{cc})\boldsymbol{\mathcal{E}}_{other} - \boldsymbol{\mathcal{G}}_{cc}\boldsymbol{\mathcal{E}}_{gcc}}{\boldsymbol{\mathcal{E}}_{gbb} - \boldsymbol{\mathcal{E}}_{other}}$$

19

Results 4b

OPAL 3.6±1.7 ±2 Delphi 6 ±1.9 ±1.4

Delphi :
$$\frac{g_{4b}}{g_{bb}} = 0.1833 \pm 0.0003$$
 (calculated)OPAL : $\frac{g_{4b}}{g_{bb}} = 0.116 \pm 0.088$ (measured)Rb : 0.21680 ± 0.00073

Fragmentation function at OPAL B tagging

- •Jet btagging: Lifetime, Lepton's pt, jet shape
- Opposite hemisphere tag.

Frag

OPAL

Secondary vertex requirment

Frag OPAL

Fragmentation function at OPAL Inclusive B hadron reconstruction

Fragmentation function at OPAL Hadronisation models

Frag OPAL

> Comparing the reconstructed scaled energy of weakly decaying B hadron distributions predicted by different models to data.

> > 24

model	parameters	$\langle x_{ m E} angle$	$\chi^2/{ m d.o.f.}$
Bowler [26]	$bm_{\perp}^2 = 65.1^{+4.8}_{-3.5} {}^{+16.6}_{-13.9} \ a = 0.80^{+0.08}_{-0.06} {}^{+0.20}_{-0.21}$	$0.7207^{+0.0008}_{-0.0007} \ {}^{+0.0028}_{-0.0029}$	67/44
Lund symmetric [27]	$bm_{\perp}^2 = 15.0^{+1.0}_{-0.7} \pm 2.1 \ a = 1.59^{+0.13}_{-0.10} \pm 0.27$	$0.7200\substack{+0.0009\\-0.0008}\substack{+0.0028\\-0.0030}$	75/44
Kartvelishvili et al. [25]	$\alpha_{\rm b}=11.9\pm0.1\pm0.5$	$0.7151 \pm 0.0006 \ ^{+0.0020}_{-0.0023}$	99/45
Peterson et al. [28]	$arepsilon_{ m b} = (41.2 \pm 0.7 \ ^{+3.6}_{-3.5}) imes 10^{-4}$	$0.7023 \pm 0.0006 \pm 0.0019$	159/45
Collins-Spiller [29]	$arepsilon_{ m b} = (22.3^{+0.7}_{-0.6}~^{+3.5}_{-4.9}) imes 10^{-4}$	$0.6870 \pm 0.0006 \ ^{+0.0035}_{-0.0019}$	407/45
HERWIG 6.2	cldir=1, clsmr(2)=0	0.7074	540/46
HERWIG 5.9	cldir=1, clsmr=0.35	0.6546	4279/46

Model tests: normalized $\chi^2/d.o.f$ probabilities

Fragmentation function at OPAL Model independent measurement

