Anomalous Quartic Gauge Couplings at OPAL

Paul Bell	DIS 2004	High Tatras, Slovakia, April 2004

Synopsis

- Introduction
 - Motivation for studying Anomalous Quartic Gauge Couplings (AQGCs)
 - AQGCs and the $\nu\nu\gamma\gamma$ final state
 - Formalism
 - The WW γ and qq $\gamma\gamma$ final states at OPAL
- Method of Analysis
 - Event selection and MC modelling
 - Assigning limits using a binned maximum likelihood method
- **Results**
 - Bias and ensemble tests
 - One- and two-dimensional fit results to the AQGC parameters
- Combination with other channels at OPAL
- Summary

Introduction to QGCs at OPAL

Motivation for Studying QGCs

The *non-Abelian* structure of the Standard Model predicts *four-point* gauge boson interactions

• The couplings at the vertices are specified by the SM gauge symmetry

 \Rightarrow probing the QGCs provides a check on non-Abelian gauge structure of the SM

• Could not measure the QGCs precisely at LEP

But, New Physics at an unprobed energy scale may have low energy effects equivalent to *anomalous* QGCs supplementary to those present in the SM

Also, anomalous couplings of *four massive vector bosons* occur in alternative (without Higgs) symmetry breaking theories

⇒ the study of AQGCs may "provide a window on the electroweak symmetry breaking sector"

QGCs at LEP 2

Self-couplings of four massive vector bosons connected to Higgs sector, but \sqrt{s} at LEP never high enough to produce either three massive vector bosons or two through a fusion process

can only probe AQGCs *involving one or more photons*...

WWyy and ZZyy

Paul Bell	DIS 2004	High Tatras, Slovakia, April 2004

QGCs in the $v\bar{v}\gamma\gamma$ Final State at OPAL

Contribution from possible anomalous $WW\gamma\gamma$ and $ZZ\gamma\gamma$ vertices to $vv\gamma\gamma$ enter via:

Dominant SM contribution to the $\nu\nu\gamma\gamma$ final state comes from radiative return diagrams:

Paul BellDIS 2004High Tatras, Slovakia, April 2004

Parameterisation of AQGCs

AQGCs parameterised by effective terms added to EW Lagrangian:

$$\mathcal{L}_{0} = -\frac{e^{2}}{8} \frac{a_{0}^{W}}{\Lambda^{2}} F_{\mu\nu} F^{\mu\nu} W^{+\alpha} W_{\alpha}^{-} - \frac{e^{2}}{16 \cos^{2} \theta_{W}} \frac{a_{0}^{Z}}{\Lambda^{2}} F_{\mu\nu} F^{\mu\nu} Z^{\alpha} Z_{\alpha},$$

$$\mathcal{L}_{c} = -\frac{e^{2}}{16} \frac{a_{c}^{W}}{\Lambda^{2}} F_{\mu\alpha} F^{\mu\beta} (W^{+\alpha} W_{\beta}^{-} + W^{-\alpha} W_{\beta}^{+}) - \frac{e^{2}}{16 \cos^{2} \theta_{W}} \frac{a_{c}^{Z}}{\Lambda^{2}} F_{\mu\alpha} F^{\mu\beta} Z^{\alpha} Z_{\beta}$$

Contribution from anomalous diagrams controlled by the four parameters

$$\frac{a_0^{\rm W}}{\Lambda^2} \qquad \frac{a_c^{\rm W}}{\Lambda^2} \qquad \frac{a_0^{\rm Z}}{\Lambda^2} \qquad \frac{a_c^{\rm Z}}{\Lambda^2}$$

where Λ is interpreted as the energy scale of the new physics.

Using the $\nu\nu\gamma\gamma$ final state, seek constraints on these four parameters

The WWy and $q\bar{q}\gamma\gamma$ Final States at OPAL

OPAL has also used the $WW\gamma$ and $qq\gamma\gamma$ final states to study the AQGCs:

Sensitive to WWyy AQGC: **a**

 a_0^W, a_c^W

SM contribution mainly from ISR, FSR from charged fermions and radiation from the W

SM contribution comes from ISR and FSR photons

Method of Analysis for $v\overline{v}\gamma\gamma$

Event Selection for v\overline{v}\gamma\gamma

Signature: *two photons and missing energy* \Rightarrow use established <u>acoplanar photon pair</u> selection, which takes two-photon candidate events then cuts on:

- photon acoplanarity and total energy deposition in ECAL (to veto γγ events)
- charged track activity (to veto lly events)
- p_T of two photon system (to veto low angle Bhabha with two-photon ISR events)
- \Rightarrow Efficiency ~ 65%, Purity > 99%
- Additional cuts to suppress SM radiative return contribution and enhance any AQGC:
 - $E_{\gamma 1}, E_{\gamma 2} > 10 \text{ GeV}$
 - $|\cos(\theta_{1,2})| < 0.9$

OPAL data (180–209 GeV): 20 events

Monte Carlo Modelling

- Used NUNUGPV Monte Carlo program with generated events fully simulated in OPAL
- AQGC vertices implemented as function of the four anomalous couplings
- Total cross-section varies quadratically with each coupling
- Generated samples reweighted to obtain $\sigma(a_0^{W}, a_c^{W}, a_0^{Z}, a_c^{Z})$

SM MC (180–209GeV): **<u>27.6 events</u>**

Effects of Anomalous Couplings

Distributions most sensitive to the AQGCs:

Want to use shape information in these distributions as well as information from the total cross-section dependence shown previously:

 \Rightarrow Employ a *binned maximum likelihood analysis* with bins in the two dimensional distribution of M_{rec} vs E_{y2}

Method of Maximum Likelihood

Without systematics, the likelihood function for one parameter *a* is given by:

A transformation is then made to fold in the systematic uncertainties:

expect these to make a small contribution with only 20 data events

Seek the optimal binning for maximum sensitivity to the anomalous couplings \Rightarrow Optimise binning using SM MC as input to the fit

Systematics

- Energy scale of ECAL
- Energy resolution of ECAL
- Uncertainty on luminosity
- ISR uncertainty in the MC modelling
- SM theory uncertainty
 - comparison of NUNUGPV with KK2F
- AQGC theory uncertainty
 - comparison with Belanger *et al*.

main experimental uncertainties

Results for v\bar{v}\gamma\gamma channel

Bias and Ensemble Tests

Bias Tests

• Minimise $-\ln L(a)$ using different MC samples as data-like input

Ensemble Tests

• Study a large number of SM MC samples with same statistics as the data

• For each coupling, 3% of the samples return $\Delta \ln L(a) > 1.92$

Data vs SM Monte Carlo

Paul Bell

DIS 2004

High Tatras, Slovakia, April 2004

One-Dimensional Fits

- Fits performed by varying parameter of interest, other three fixed at SM value (0)
- Systematic uncertainties negligible compared to statistical precision

- $-0.114 < a_c^{W} / \Lambda^2 < 0.103 \text{ GeV}^2$ $-0.090 < a_0^{Z} / \Lambda^2 < 0.026 \text{ GeV}^2$
- -0.034 < $a_c^{Z}/\Lambda^2 < 0.039 \text{ GeV}^{-2}$

 \Rightarrow All compatible with zero and consistent with SM limits from ensemble test

Paul Bell

DIS 2004

Two- and Four- Dimensional Fits

- Two-dimensional fits performed by varying two parameters of interest, other two fixed at SM value (0)
- Two-dimensional projections of full four-dimensional fits superimposed
- Systematic uncertainties included

Note

- Relatively tighter constraints on Z couplings evident
- Limits on Z and W couplings uncorrelated

Again, SM compatibility is illustrated

Paul Bell

DIS 2004

Limits on WWyy from $v\overline{v}yy$ and W⁺W⁻y

Limits on ZZyy from $v\overline{v}yy$ and $q\overline{q}yy$

 $qq\gamma\gamma$ analysis employed energy spectrum of second highest energy photon for the likelihood function, using 176 selected events at $\sqrt{s} > 130$ GeV

Combined 95% CL limits for Z couplings are:

-0.007 < $a_0^{Z}/\Lambda^2 < 0.023$ GeV⁻² -0.029 < $a_c^{Z}/\Lambda^2 < 0.029$ GeV⁻²

 \Rightarrow no deviations from SM seen

Overall Combination

DIS 2004

Summary

• Observe 20 vvyy events in OPAL data passing acoplanar photon selection with additional cuts on energies and angles at $\sqrt{s} = 183-209 \text{ GeV}$

• M_{rec} and $E_{\gamma 2}$ distributions are sensitive to different anomalous couplings: \Rightarrow optimised the use of this shape information in a binned $\Delta \ln L$ function of the four coupling parameters a_0^W , a_c^W , a_0^Z , a_c^Z .

- Observed distributions of M_{rec} and $E_{\gamma 2}$ are in good agreement with SM MC prediction
- Combining with $qq\gamma\gamma$ and WW γ final states at OPAL, 95% CL limits at $\Delta \ln L(a) = 1.92$ are:

 $\begin{array}{rll} -0.020 &< a_0^{\rm W}/\Lambda^2 < \ 0.020 \ GeV^{-2} \\ -0.052 &< a_0^{\rm Z}/\Lambda^2 < \ 0.037 \ GeV^{-2} \\ -0.007 &< a_c^{\rm W}/\Lambda^2 < \ 0.023 \ GeV^{-2} \\ -0.029 &< a_c^{\rm Z}/\Lambda^2 < \ 0.029 \ GeV^{-2} \end{array}$

• Limits have also been reported allowing two parameters to vary

Results are consistent with the SM

Pau	I B	ell