Latest QCD results from LEP

Matthew Ford

XXXIXth Rencontres de Moriond (Electroweak interactions and unified theories) La Thuile, Italy, 22nd March 2004

Latest QCD results from LEP

- 1 Quark and gluon jet fragmentation functions (OPAL)
- 2 Unbiased gluon jets, with the "jet boost" algorithm (OPAL)
- 3 Coherence soft particle production in three-jet events (DELPHI)
- 4 $\alpha_{\rm s}$ from event shapes (LEP combined, with new published input from ALEPH and L3)

Scaling violations of quark and gluon jet fragmentation functions

Define the fragmentation function

$$D_a = \frac{1}{N_{\rm jet}(Q)} \frac{{\rm d}N_{\rm p}(x_E,Q)}{{\rm d}x_E}$$

for a parton a fragmenting into hadrons with the momentum fractions $x_E=E_{\rm hadron}/E_{\rm jet}.$

Several ways to identify jets in $e^+e^- \rightarrow q\bar{q}(g)$ events:

- Biased jets (using Durham jet-finder to select 3-jet events):
 - b-tagging (neural network) \Rightarrow samples enriched in udsc, b and gluon jets.
 - Energy-ordering \Rightarrow samples enriched in quark and gluon jets.
- Unbiased quark jets, defined by hemispheres of inclusive hadronic events:

– b-tagging \Rightarrow unbiased udsc and b jets

Unbiased gluon jets, using the "jet boost" algorithm

(NB previous measurements have been published using other algorithms)

Can measure fragmentation functions in all cases.

Fragmentation functions (contd.)

- NLO predictions exist for Q-dependence of quark and gluon fragmentation functions, but not explicitly for x_E -dependence (predictions are based on fits to data).
- All theory predictions are based on unbiased jets (not dependent on choice of jet-finder).
- Must choose appropriate energy scale for each jet when comparing with theory:
 - $Q = \sqrt{s}/2$ for unbiased quark jets
 - $Q_{\text{jet}} = E_{\text{jet}} \sin(\theta/2)$ for biased jets, where θ is the angle to the nearest jet.
- Measurements allow comparisons between:
 - Data and theory
 - Data and MC
 - Biased and unbiased jets

Scale dependence of quark jet fragmentation functions

udsc quark jets

b quark jets

Moriond Electroweak, La Thuile, Italy, 22nd March 2004

Matthew Ford

Scale dependence of quark/gluon jet fragmentation functions

Flavour-inclusive quark jets

Gluon jets

Moriond Electroweak, La Thuile, Italy, 22nd March 2004

Matthew Ford

x_E dependence of quark jet fragmentation functions

udsc quark jets

b quark jets

Moriond Electroweak, La Thuile, Italy, 22nd March 2004

Matthew Ford

x_E dependence of quark/gluon jet fragmentation functions

Flavour-inclusive quark jets

Gluon jets

Moriond Electroweak, La Thuile, Italy, 22nd March 2004

Matthew Ford

Fragmentation functions (contd.)

Conclusions from latest OPAL results:

- Good agreement between biased and unbiased jet measurements, suggesting $Q_{\rm jet} = E_{\rm jet}\sin(\theta/2)$ is a suitable scale for biased measurements.
- Good agreement with previous OPAL and DELPHI measurements, where available.
- Scaling violation (Q-dependence) is positive at low x_E and negative at high x_E for all fragmentation functions.
- All theory predictions in good agreement with data for the light quark jets. Poorer agreement for gluon and b-quark jets, especially at low and high x_E .
- Good agreement between data and MC, except at high x_E and small Q.

Unbiased gluon jets with the jet boost algorithm

- The jet boost algorithm (*Edén & Gustafson*, 1998) proposes a way to relate gluon jets in qq
 q
 q
 q events to the hemispheres of a gg system.
 ⇒ unbiased gluon jets
- (a) decompose the q\u00e7g system into two colour dipoles:
 qg and \u00e7g
- (b) boost each dipole into a back-to-back frame
- (c) re-combine the two components of the gluon

• Use HERWIG to compare boost algorithm with 'real' gg hemispheres: good agreement found for jet multiplicities and fragmentation functions.

 \Rightarrow can compare experimental measurements with pQCD predictions.

Unbiased gluon jets (contd.)

OPAL have measured properties of unbiased gluon jets using the jet boost algorithm, with LEP1 data. For example:

• Scale-dependence of mean charged particle multiplicity:

• Fragmentation functions (at $E_{jet}^* = 14.24, 17.72 \text{ GeV}$):

Coherent soft particle production in $e^+e^- \rightarrow Z^0 \rightarrow q \overline{q} g \text{ events}$

- Interference is fundamental to all quantummechanical gauge theories, including QCD.
- Interference is built into the standard shower evolution/fragmentation models...

However, incoherent models with many tunable parameters can also describe the data.

 \Rightarrow need a direct test for the coherence effects.

 Consider low-energy hadrons emitted at large angle. They cannot be assigned to a specific jet, so must treat them as coherent emissions from multiple jets.

Coherent soft particle production (contd.)

• QCD theory prediction at leading order:

$$\mathsf{d}\sigma_3 = \frac{1}{4} \frac{C_A}{C_F} \left[\widehat{\mathsf{qg}} + \widehat{\overline{\mathsf{qg}}} - \frac{1}{N_c^2} \widehat{\mathsf{qq}} \right] \, \mathsf{d}\sigma_2$$

where

 $d\sigma_2 = cross$ section for soft gluon emission perpendicular to axis of $q\bar{q}$ event

 $d\sigma_3$ = cross section for soft gluon emission perpendicular to plane of qq̄g event

 $\hat{ij} = 2\sin^2(\theta_{ij}/2)$, where θ_{ij} is the opening angle between two jets (antenna function)

- The $\frac{1}{N_c^2} \widehat{\mathbf{q}} \overline{\mathbf{q}}$ term is responsible for destructive interference effects.
- Experimental measurements \Rightarrow
 - Test theory prediction
 - Verify coherence effect
 - Measure the slope, corresponding to C_A/C_F at leading order.

Coherent soft particle production (contd.)

DELPHI results use the angular ordered Durham jet algorithm, with $y_{cut} = 0.015$ applied to hadronic events at $\sqrt{s} = 91$ GeV.

- Compare multiplicities in cones of angle 30° perpendicular to (i) qq
 qg
 plane in 3-jet events, and (ii) qq
 axis in 2-jet events.
- Fit multiplicity ratios to the destructive interference term $k \frac{1}{N_c^2} \widehat{\mathbf{qq}}$, where k = 1 is the fully coherent LO prediction, and k = 0 corresponds to no destructive interference:

$$k=1.37\pm0.05~(ext{stat.})\pm0.33~(ext{syst.})$$
 $[\chi^2/ ext{dof}=1.2]$

• Measure slope, corresponding to C_A/C_F at LO (c.f. QCD value $C_A/C_F = 2.25$):

$$rac{C_A}{C_F} = 2.211 \pm 0.014 \; {
m (stat.)} \pm 0.053 \; {
m (syst.)} \ [\chi^2/{
m dof} = 1.3]$$

Coherent soft particle production (contd.)

DELPHI results strongly favour the theory prediction with full coherence included:

Combined LEP measurement of $\alpha_{\rm s}(M_Z)$ from event shape observables

• Define 6 standard event shape observables, in events of the type $e^+e^- \rightarrow Z/\gamma \rightarrow$ hadrons:

T-Thrust	$B_{ m W}$ – Wide jet broadening			
$M_{ m H}$ – Heavy jet mass	C - C-parameter			
$B_{\rm T}$ – Total jet broadening	y_{23} – Durham 2–3 jet transition			

- Observables describe the inclusive geometry of the hadronic final state. No need for explicit jet-finding or particle identification.
- All 6 observables are *infrared-safe*, i.e. invariant under soft or collinear gluon emission, and relatively insensitive to non-perturbative physics
 ⇒ ideal test for hard interactions in pQCD.

• Example: Thrust (T):

Thrust axis, \hat{n}_T , is chosen to maximize the sum of absolute momentum components for *all observed particles* projected along that axis.

$\alpha_{s}(M_{Z})$ from event shapes (contd.)

- 2 perturbative theory predictions for each event shape distribution, parameterised in terms of α_s :
 - $\mathcal{O}(\alpha_s^2)$ calculation using matrix elements: best available prediction for multi-jet events
 - NLLA calculation, resumming logarithmically enhanced terms to all orders in α_s : best available prediction for 2-jet region

Combine calculations using log(R) matching scheme

- \Rightarrow prediction for wide range of each observable.
- Use MC models to correct perturbative theory to hadron level

NB some analyses use power correction models instead. Use only MC here, in the interests of consistency between experiments

- Fit theory to experimental distributions
 - \Rightarrow measure $\alpha_{\rm s}$
- Final measurements now available at all energies from ALEPH, DELPHI and L3, including reanalysis of older data with improved theory and MC.

Final OPAL measurements expected summer 2004.

$\alpha_{s}(M_{Z})$ from event shapes (contd.)

• Combine all available LEP $\alpha_{\rm s}$ measurements, using consistent theory predictions:

\sqrt{s}	T	$M_{ m H}$	$B_{ m W}$	B_{T}	C	y_{23}	
91.2	ADLO	ADLO	ADLO	ADLO	ADL	А	0
133.0	ADLO	ADLO	A LO	A LO	A L	А	0
161.0	ADLO	ADLO	A LO	A LO	A L	А	0
172.0	ADLO	ADLO	A LO	A LO	A LO	А	0
183.0	ADLO	ADLO	ADLO	ADLO	ADLO	А	0
189.0	ADLO	ADLO	ADLO	ADLO	ADLO	А	0
200.0	ADLO	ADLO	ADLO	ADLO	ADLO	А	0
206.0	ADLO	ADLO	ADLO	ADLO	ADLO	А	0

(A=ALEPH, D=DELPHI, L=L3, O=OPAL)

• Form covariance matrix between measurements from all variables, experiments and energies:

$$V_{ij} = V_{ij}^{\text{stat.}} + V_{ij}^{\text{exp.}} + V_{ij}^{\text{had.}} + V_{ij}^{\text{theo.}}$$

Four uncertainty contributions (statistical, experimental, hadronisation and theory) have different correlations between measurements.

• After running all input measurements to the Z⁰ scale, the least-squares fit for α_s is a linear combination of the inputs:

$$\hat{\alpha}_s = \sum_i w_i \, (\alpha_s)_i \,, \quad \text{with weights} \ w_i = \frac{\sum_j V_{ij}^{-1}}{\sum_{jk} V_{jk}^{-1}}$$

$\alpha_{\rm s}(M_Z)$ from event shapes (contd.)

- Harmonize uncertainties where possible:
- $\sigma_{\text{stat.}}$: Use values quoted by experiments
- $\sigma_{\text{exp.}}$: Average the values quoted by different experiments
- $\sigma_{hadr.}$: Take standard deviation of results quoted for PYTHIA, HERWIG and ARIADNE for each input.

 \Rightarrow then fit the form $\sigma_{\rm hadr.} = A_y/Q + B_y$ for each observable y.

 $\sigma_{\text{theo.}}$: Re-evaluate independently, using "uncertainty band" method. Vary several arbitrary parameters of the theory (not only the renormalisation scale μ).

More details in hep-ph/0312016

 Treat hadronisation and theory uncertainties as uncorrelated when calculating the weights w_i (otherwise we have large *negative* weights ⇒ unstable combination).

BUT include 100% correlation when calculating the hadronisation and theory uncertainties of our combined $\alpha_{\rm s}(M_Z)$.

This approach gives a stable fit... but does not always minimise the total uncertainty of the combined measurement.

$\alpha_{s}(M_{Z})$ from event shapes (contd.)

${}^{\scriptstyle 0.110}_{\scriptstyle 0.115}{ m s}(M_Z)$ from event shapes (contd.)

 LEP combination method applied to single experiments:

PSfrag replacements
 Combinations at single energies, compared with
 Q(Q) running prediction:

Conclusions

- Original tests of QCD are still being performed with LEP data, more than 3 years after shutdown:
 - Unbiased gluon jets (OPAL)
 - Coherent soft particle production (DELPHI)
- Combined measurements of α_s from event shapes are converging towards a final publication. Results from all individual experiments will be finalised by summer 2004.
- Improved α_s measurements will be possible when NNLO/NNLLA QCD predictions become available. Validity of future improvements to the event-shape distributions can be tested using LEP1 data.
- Other LEP QCD results have not been mentioned, due to lack of time! (power corrections, colour reconnection, glueball searches, pentaquark searches...)