W Mass & Width Measurement at LEP II

BEACH 04, IIT Chicago, 08/03/04 Ambreesh Gupta, University of Chicago

Introduction

- Indirect measurement of W mass
 - LEP1 and SLD measure W mass with an uncertainty of 32 MeV
 - Taking account of Top mass from Tevatron reduces this error to 23 MeV
- A direct measurement of W mass with similar precision is of great interest
 - To test the consistency of Standard Model
 - To better constraint the Higgs mass
- Measurement of the width of W boson can also be carried out at LEP providing further consistency of the SM

WW Production and Decay at LEP

- W's are produced in pairs at LEP
 - 700 pb⁻¹/experiment; 40,000 WW events
 - WW \rightarrow qqlv BR ~ 44%
 - WW \rightarrow qqqq BR ~ 46%
- Kinematics fitting
 - LEP beam energy precisely measure; Constraint event kinematics with
 - -- Total Energy = \sqrt{s}
 - -- Total Momentum = 0
 - \Rightarrow Improves mass resolution
 - Additionally, apply equal mass constraint

 m_{w^+} - m_{w^-} = 0

BEACH 2004

Mw Measurement at Kinematic Threshold

- The WW cross section at $\sqrt{s} = 2Mw$ sensitive to W mass
- LEP experiments collected 10 pb⁻¹ data at $\sqrt{s} = 161$ GeV.
- Combined Result :

 $Mw = 80.40 \pm 0.21 \text{ GeV}$

W Mass Distribution

W Mass & Width Extraction

- Maximum likelihood fit to extract mass and width from direct reconstruction
 - One parameter fit to extract mass
 - Two parameter fit to extract mass and width simultaneously
- <u>Breit-Wigner Technique (O)</u>: Simple fit to data with a BW distribution. Take care of resolution and ISR effects with MC studies
- <u>Convolution Technique(D,O)</u>: Convolve physics and detector Resolution; use eventby-event information. Correct bias with fully simulated

Monte Carlo events.

Re-Weighting Technique(A,L,O) Re-Weight fully simulated MC to different Mw, Gw. Data and MC treated identically; no bias correction needed.

Measurement & Uncertainties

- The combined preliminary LEP W mass
 M_W = 80.412 ± 0.029 (stat) ± 0.031(syst) GeV
 (Does not include OPAL 2000 data)
- Systematic error can be broken in two main pieces
 1. LEP Beam energy
 2. MC Modeling

Weight of qqqq channel only 9%

With equal weight for qqqq statistical uncertainty : 22 MeV

Ambreesh Gupta

Systematic Statistical

gglv

qqqq

Combined

LEP II Beam Energy

- LEP center of mass energy sets the energy scale for W mass measurement
- $\frac{\Delta M_W}{M_W} = \frac{\Delta E_{beam}}{E_{beam}}$

 $E_{Beam} \propto \phi B_{\perp} dl$

• E_{beam} is obtained from total bending field

- Field is mapped with 16 NMR probes.
- Calibrated using Resonant De-Polarization (RDP)
 - Works between 41 60 GeV.
 - Extrapolated to LEP II energies.
- Main systematic error due to extrapolation

LEP II Beam Energy

- Extrapolation checked with
 - Flux loops
 - Spectrometer (New results)
 - Energy loss methods (New results)

- With the new results from extrapolation and cross-checks
 - Reduction of beam energy error
 - new : $\Delta E_{\text{beam}} = 10\text{-}20 \text{ MeV} \Rightarrow \Delta M_{\text{W}} = 10 \text{ MeV}$
 - old : $\Delta E_{\text{beam}} = 20-25 \text{ MeV} \Rightarrow \Delta M_{\text{W}} = 17 \text{ Mev}$

Systematics from Monte Carlo Modeling

- Main Sources
- QED/EW radiative effects
- Detector Modeling
- Hadronisation Modeling
- Final State Interaction
- Background Modeling

QED/EletroWeak Radiative Corrections

- KoralW's O(α³) implementation adequate, but misses
 - WSR
 - interference between ISR,WSR & FSR
- KandY includes
 - $O(\alpha)$ corrections
 - Screened Coulomb Correction

$Error \sim 10 MeV$

Detector Simulation

- Z0 calibration data recorded annually provides control sample of leptons and jets (energy ~ 45 GeV)
- Data/Mc comparison is used to estimate corrections for
 - Jet/Lepton energy scale/resolution
 - Jet/Lepton energy linearity
 - Jet/Lepton angular resolution/biases
 - Jet mass
- Error is assigned from the error on correction

Error qqlv (qqqq) ~ 20 (15) MeV

Hadronisation Modeling

- MC models (JETSET, HERWIG, ARIADNE) generate hadrons
 - Difference in particle spectra, angular distributions and contents (baryons)
 ⇒ Interplays with detector response
 - JETSET used by all LEP experiment with parameters tuned with Z peak data
- Systematic uncertainty on W mass
 - Comparison between MC models produces shift $\sim 30\text{--}40~MeV$
 - Difference of baryon rate between models; but their mass is neglected in reconstruction \Rightarrow a bias, which is not genuine hadronisation effect
 - Solution: Re-weight fully simulated models for difference in rates

Expected error qqlv (qqqq) ~ 40 Mev \rightarrow 15 (25) MeV

Final State Interactions

Hadronically decaying W pairs short living ($\sim 0.1 \text{ fm}$)

- their decay products can interact among each other
- Color Reconnection (CR)
 - color flow between W's could bias their masses
 - only phenomenological models exist. Effect small(?) and hard to measure.
- Bose-Einstein correlation (BEC)
 - coherently produced identical pions are closer in phase space.
 - BE correlation between neutral and charged pion established.
 - Does the effect exist between W's?

14

Bose-Einstein Correlation in WW events

- Studies on BEC between different W's at LEP
 - 2-particles correlations in qqqq events vs. two "mixed" qqlv events
 - ALEPH, L3 and OPAL: no hint for BE corr.
 - DELPHI: evidence for BEC

-- under investigation

- W mass uncertainty due to BEC
 - Error $\sim 40 \text{ MeV}$ (same inter & intra corr.)
 - Track momentum cut analysis helps reduce this to $\sim 25 \text{ MeV}$
 - Data limits on strength parameter will also reduce it further

Color Reconnection

- Several Model exist.
 - String based (SKI, SKII in JETSET)
 - Color dipoles (ARIADNE)
 - Cluster based (HERWIG)

SK-I 100%	300 MeV
ARIADNE AR2	70-80 MeV
Rathsmann	40-60 MeV
Herwig	30-40 MeV

- Particle flow between inter jet region
 - limit on CR probability (SK1 model)
 - use limit to set CR uncertainty (data driven).
- CR expected to effect soft particles and particles away from cone jet
 - harder cut on track momentum to redefine jet direction reduces the sensitivity to CR

CR uncertainity ~ 120 MeV, with p-cut ~ 50 MeV

BEACH 2004

Results: qqqq and qqlv channels

BEACH 2004

Results: LEP W mass and Width

Winter 2003 - LEP Preliminary

Winter 2003 - LEP Preliminary

<u>Summary</u>

- Final W mass from LEP should be available by the end of this year.
- The expected changes from present result
 - Full statistics: OPAL analysis from full dataset
 - Improved LEP beam energy measurement
 - Improved understanding on Final State Interactions
 - -- Reduction in CR and BEC uncertainty
 - Most systematic errors revised
 - -- Hadronisation, Higher Order Corrections
- Possible improvement in W mass error
 - 43 MeV to 37 MeV (. . . Expected)