Charged Particle Multiplicity Distributions

Abstracts covered:

- LEP2 Charged particle multiplicities in heavy and light quark initiated events above the Z0 peak
 - (OPAL, 5-0511)
- LEP1 Charged particle multiplicity in three jet events and twogluon systems
 - (DELPHI, 5-0437, new results)
- LEP1 Measurement of charged-particle multiplicity distributions and their Hq moments in hadronic Z decays at LEP
 - (**L3**, 6-0237)

HERA — Multiplicity distributions in deep inelastic scattering at HERA

• (ZEUS, 6-0272, new results)

Charged Particle Multiplicity Distributions, ICHEP'04, Beijing

(Brief) Introduction

What can we learn from multiplicity distributions?

- Difference between b- and uds-events, energy dependence?
 - naive model: decreasing difference at higher energies
 - MLLA and other models: constant with energy
- Difference between quark- and gluon-jets?
 - can be used to extract Colour Factor ratios
- Shape of multiplicity distributions?
 - analysis of higher factorial moments sensitive to particle production correlations
- Compare average multiplicities in e⁺e⁻, pp and ep data
 - basic fragmentation properties identical?

Basic hypothesis

- Local Parton Hadron Duality (LPHD)
 - hadron multiplicity is directly related to parton multiplicity via simple normalization factor, can be calculated perturbatively

Charged Particle Multiplicity Distributions, ICHEP'04, Beijing

Energy Dependence of δ_{bl} (OPAL 5-0511)

- $\delta_{bl} = \langle N_b \rangle \langle N_{uds} \rangle$
- LEP2 data e⁺e⁻ → hadrons from 130 - 206 GeV
- 3 independent samples based on event likelihood, mainly b-tag
 - b-enriched, c-enriched (slightly), uds
- unfolding procedure based on PYTHIA/HERWIG predicted b,c,uds fractions/sample
- Iargest sys. errors
 - PYTHIA/HERWIG model dependence, track resolution

Theoretical Predictions for δ_{bl}(E)

Naive model:

- same multiplicity of light hadons in uds-jets and b-jets (at same energy) + additional b-hadron multiplicity
- expect decreasing δ_{bl} with higher energy

Pertubative QCD:

- soft gluon radiation suppressed inside cone of $\Theta_0 = M_q/E_q$
- expect significant differences between gluon radiation in light and heavy quark jets
- -- LPHD + Modified Leading Log Approximation (MLLA) expects no energy dependence:
 - constant $\delta_{bl} = 5.5 \pm 0.8$ ($\pm \sim 1$ due to missing higher order corrections)

Other QCD calculations

-- predict constant $\delta_{bl} = 3.7 - 4.1$ (depending on m_b)

Charged Particle Multiplicity Distributions, ICHEP'04, Beijing

Charged Particle Multiplicity Distributions, ICHEP'04, Beijing

3-jet events and 2-gluon systems (DELPHI 5-437, new results)

LEP1 data e⁺e⁻ → hadrons

- reject b-events (anti b-tag)
- force reconstruction of 3-jets (opening angles Θ_1 , Θ_2 , Θ_3) (angular ordered Durham algorithm, cross-checks with Cambridge and Luclus)
- Get multiplicity distributions for each Θ_1, Θ_3 -bin
- Fit multiplicity distributions by negative binominal
 - get average 3-jet multiplicity N_{aāa}
- **Recent predictions by Eden, Gustafson, Khoze**

$$N_{q\bar{q}g} = N_{q\bar{q}}(L_{q\bar{q}},\kappa_{\mathrm{L}u}) + \frac{1}{2}N_{gg}(\kappa_{\mathrm{L}e})$$

3-jet multiplicity 2-quark multiplicity 2-gluon multiplicity $N_{q\bar{q}g} = N_{q\bar{q}}(L,\kappa_{Lu}) + \frac{1}{2}N_{gg}(\kappa_{Lu})$

L = kinematic variables $\kappa = cut-offs$

Eden B

Eden A

Charged Particle Multiplicity Distributions, ICHEP'04, Beijing

Colour Factor Ratios C_A/C_F

- Eden A + B equations can be used to fit colour factor ratios C_A/C_F
- Naive expectation for 2-quark / 2-gluon ratio contains colour factors

$$r = \frac{N_{gg}}{N_{q\bar{q}}} = r_0 [1 - r_1 \gamma_0 - r_2 \gamma_0^2 - r_3 \gamma_0^3]$$

$$r_0 = C_A / C_F \qquad \gamma_0 = \sqrt{\frac{2C_A \alpha_s}{\pi}}$$

 $- C_A / C_F = 2.261 \pm 0.014 \text{ (stat.)} \\ \pm 0.036 \text{ (syst.)} \\ \pm 0.052 \text{ (theor.)} \\ \pm 0.041 \text{ (clus.)}$

Charged Particle Multiplicity Distributions, ICHEP'04, Beijing

in agreement with SU(3) expectation of QCD

multiplicity N_{gg} from N_{qqg} 1.8(using MLLA prediction for N_{qq})1.61.41.4

• Ratio r = N_{gg}/N_{qq} subject of large corrections, better use $r^{(1)} = \frac{dN_g/ds}{dN_q/ds}$

be used to extract 2-gluon

Results

Iower order calculations oversize

r (as lower the order as more oversizing)

agreement with Eden et al. and similar calculations and earlier OPAL result

Charged Particle Multiplicity Distributions, ICHEP'04, Beijing

- Shape of multiplicity distribution is fundamental tool to study particle production correlations

Charged Particle Multiplicity Distributions, ICHEP'04, Beijing

Problem: H_q sensitive to low statistics at high multiplicities → need truncation (introduce bias?)

x 10

ratio H

0

L3 used LEP1 data (b-tagged events + udsc-events)

→ truncation around rank q ≈ 50 (criteria: relative stat. error > 50%)

a)

Results

- Minimum at q = 8 seen
 - confirms MLLA + NNLLA ^{0.5}
- quasi-oscillations for higher q visible
- JETSET agrees well, HERWIG doesn't

MC studies suggest

s well, h't -0.5-0.5

JETSET

need > 10⁷ events to detect maximum at q = 8 (here: 1.5 x 10⁶ ev. used) (Could be in reach with LEP combination?)

Charged Particle Multiplicity Distributions, ICHEP'04, Beijing

Michael Hauschild, CERN, 16-Aug-2004, page 10

b)

HERWIG

Multiplicity in Deep Inelastic Scattering (ZEUS 6-0272, new results)

More difficult to study multiplicity in ep collisions

- highly asymmetric beam conditions
- large part of hadronic system outside detector acceptance
- --- only visible part of hadronic system (M_{eff}) can be used
- Study in lab frame and current + target regions of Breit frame
 - Assign final state hadrons after Breit frame transformation according to p_z:
 - if $p_Z > 0 \rightarrow assign to current region, otherwise assign to target region$

Charged Particle Multiplicity Distributions, ICHEP'04, Beijing

Comparison with eter and pp Data

ZEUS e⁺p data from 1996-97, 38.6 pb⁻¹, 735k events

Results:

- Good agreement with e⁺e⁻ and pp data above 10 GeV
- Data as function of Q lower for < 10 GeV
- Better agreement of data as function of E_{current} for < 10 GeV
 - where:
 E_{current} = energy of all particles in current region

Charged Particle Multiplicity Distributions, ICHEP'04, Beijing

Summary of Charged Multiplicities

- Average δ_{bl} constant with energy (27 206 GeV)

 - naive model ruled out
- Study of 3-Jet Events and 2-Gluon Systems (DELPHI)
 - Fit to Color Factor ratios C_A/C_F agrees with SU(3) expectation
 - Ratios r = N_{gg}/N_{qq} and r⁽¹⁾ agree with predictions by Eden et al.
- Analysis of H_q moments (L3) sensitive to particle production correlations
 - MLLA and NNLLA expected minimum at rank q = 5 confirmed

DIS ep multiplicity data (ZEUS) in current Breit frame agree with e⁺e⁻ and pp data