

Richard Hawkings (CERN)

ICHEP Beijing, 17/8/04

Heavy flavour electroweak measurements at LEP and SLD:

- Theoretical motivation and background
- Experimental analyses at LEP1 and SLD ($e^+e^-\sqrt{s} \approx 91$ GeV)
- Heavy flavour electroweak fit and (almost) final results
- Going to high energies (LEP2: $e^+e^- \sqrt{s}=130-209$ GeV)
- Summary and conclusions
- Thanks to LEP electroweak working group
 - See <u>http://lepewwg.web.cern.ch/LEPEWWG</u> for numbers, plots...

- Measurement Z⁰ partial decay width:
 - R_b≅G(bb)/G(had)
 - Vertex corrections involving top
 - New physics coupling to mass ?

- Measurement of asymmetries:
 - At LEP $A_{FB}^{0,q} = \frac{3}{4}A_{e}A_{q}$

- $A_f = 2g_V g_A / (g_V^2 + g_A^2)$
- Effective couplings $g_V/g_A \Rightarrow sin^2 \theta_{eff}$
- Due to isospin structure for e,b, LEP A_{FB}^b mainly sensitive to A_e
- SLD: e⁻ beam polarisation (~73%) allows direct measurement of A_b

- LEP/SLD now 'part time' collaborations things change slowly
 - Analyses very mature, publishing final results
- New since ICHEP02:
 - DELPHI and OPAL finalised all b and c quark asymmetries
 - SLD finalised R_b, R_c and asymmetries
 - All done LEP1/SLD results are final
 - Sophisticated analyses used on complete final datasets
 - LEP2 results:
 - Analyses still preliminary in many cases, some with partial datasets
 - Work continues to publish final results
 - Available data and combinations unchanged since ICHEP02

Experimental environment

- 2-jet structure: initial q/\overline{q} to largely independent hemispheres
- Apply flavour (b/c/uds) and charge (q/\overline{q}) tagging to each
 - Lifetime, lepton, D^(*) meson tags, and combinations
 - Exploit consistency of tag results for tag calibration and systematics
 - Systematic issues: control of backgrounds from unwanted quark flavours, understanding of hemisphere correlations (e.g. 3-jet events)

- Impact parameters, secondary vertex reconstruction, vertex mass
 - b-flavour tag: e=25-50%, purity 95-99%
- B secondary vertex charge: B⁺ or B⁻
 - Tags quark charge for long-lived decays
 - Can also reconstruct decay chain (b→)c→s→K⁻, tag kaon charge
 - Kaon ID with Cherenkov or dE/dx
- Lepton-based b/c-tagging (e or μ)
 - Limited by BR(b \rightarrow I) and (c \rightarrow I) to $\mathbf{e} \approx 5\%$
 - Separate $b \rightarrow I$, $c \rightarrow I$ and $b \rightarrow c \rightarrow I$
 - Lepton p, p_t and jet shape variables in likelihood or NN ⇒extract quark charge
- D^(*) meson-based c-tagging

• Small BRs, enrich with incl. $D^{*+} \rightarrow D^{0}\pi^{+}$ 17th August 2004 Richard Hawkings

Reaching the ultimate precision

- Combine the basic techniques
 - Multiple b/c flavour tags with different purities and efficiencies
 - Double tags allow b and sometimes c efficiencies to be derived from data
 - Monte Carlo needed mainly for uds efficiencies and hemisphere correlations
 - Charge tagging combine jet charge
 - $Q_{jet} = \Sigma q_i(p_i)^k$ with various **k** weights $0 < k < 1 \ge 10000$... with other available estimators in
 - each hemisphere (lepton, vertex, kaon)
 - Typical mistag rate 25-30% for b-hemis
- Sophisticated multi-dimensional fits
 - Extract the maximum from each event, depending on purity and tag confidence

- Sophisticated combination procedure is used:
 - R_b, R_c and asymmetry measurements depend on each other, common systematics and external inputs (LEP+elsewhere)
 - Common fit to electroweak observables plus auxiliary params
 - Charm hadron production fractions, b/c semileptonic BRs and mixing $\bar{\mathbf{c}}$
 - All measurements corrected to consistent set of external inputs
 - Fit LEP asymmetries A_{FB}^{b,c} and SLD A_{b,c} separately
 - Also fit LEP off-peak asymmetries separately to check energy dep. OK
- Final fit χ^2 with all LEP asym corrected to peak is 53/(105-14)
 - Very low are errors overestimated? Combination of effects:
 - Statistical errors only: $c^2=92/(105-14)$, but large contrib. from BR(b \rightarrow I)
 - Without this, $c_{\text{stat}}^2=65/(99-13)=4\%$; low fluctuation..?
 - With systematics: c² reduced by 'extreme' semileptonic decay models; other systematics estimated from statistical data-MC comparisons

 R_b sensitive to m_{top} and in good agreement with direct Tevatron measurement

17th August 2004

100

0.2125 0.215 0.2175 0.22

 $\Gamma_{\rm h}/\Gamma_{\rm had}$

Richard Hawkings

b-asymmetry at Z pole

- LEP analyses using leptons (also give A_{FB}^c) and inclusive (jet charge++)
 - (Too) good consistency between them
 A_{FB}^b=0.0998±0.0015±0.0006±0.0005
- Uncertainty is statistics dominated
- Common expt. systematic is 0.0004
 - Mainly from QCD effects ¼ total error
 - Additional theory uncertainty of 0.0005 from comparison of ZFITTER versions

c-asymmetry at Z pole

- LEP analyses using leptons (also measure A_{FB}^{b)} and D^(*) mesons
 - Good agreement provides confidence that b/c separation in leptonic events is understood

e

 $A_{FB}{}^{c} = 0.0706 \pm 0.0030 \pm 0.0017$

- Result is also statistics dominated, common systematic 0.0009
 - Additional theory uncertainty is negligible for A_{FB}^c

Tensions in the Standard Model

 A_b from SLD and A_{FB}^b 'bands' consistent with Standard Model

- A_{I} (from A_{LR} , lepton asym and τ_{pol} is 'high'
- ... giving a 'low' A_b from LEP A_{FB}^b results
- Also seen when measurements are interpreted as sin²θ in Standard Model
 - ~3σ discrepancy between A_{LR} and A_{FB}^b
 17th August 2004 Richard Hawkurgs

- Could A_{FB}^b from LEP be wrong?
 - Total error is completely dominated by statistical uncertainty
 - 7 measurements from 4 collaborations, leptons and inclusive/jet-charge
 - QCD correlated systematics including hemisphere correlations
 - Gluon radiation dilutes asym by ~4%
 - Effects calculable up to O(α_s²) and partially removed by tag calibration
 - New QED theoretical uncertainty from γ/Z interference in ZFITTER
 - Some inconsistencies in option settings, expect this to be resolved
 - Any of these uncertainties would have to be underestimated by O(10σ) to 'explain' A_{FB}^b-A_{LR} discrepancy!
 17th August 2004

Source	$\sigma(A_{FB}^{b})$
Statistics	0.0014
Internal systematics	0.0004
QCD effects (corl ⁿ)	0.0004
QED theoretical	0.0005
b/c physics	0.0002
Total	0.0017

Going to high energies

- qq cross section only O(10⁻³) of LEP1
 - Relatively low statistics use single tag measurements (or event tags)
 - Increase in systematics not significant
- New features
 - Reject radiative return to Z
 - Kinematic fits for γ along beampipe or in detector acceptance
 - Reject WW and ZZ background
 - Standard WW/ZZ selections as vetos
- Tag b and c with lifetime/leptons/D*
 - Asymmetry from leptons, D*, jet charge
- Data from 130-209 GeV (~700 pb⁻¹/expt)
 - Currently results from subset of data
 - Lower energies final, higher preliminary

Charm tag for high energy data

- Reject b-events using lifetime tag
- Separate charm from uds with NN
 - Event shapes, lifetime, particle ID

LEP2 b/c-quark results

(S.M. b inputs)

0

 $<A_{FB}^{c}-A_{FB}^{c-SM}>=-0.3s$

√s'/√s > 0.1 , 0.85

√s (GeV)

√s (GeV)

Constraints from high energy results

- Set limits on non-SM physics:
 - Contact interactions: limits on models with various couplings with energy scale L; e=1/L²
 - Affects both cross-section and asymmetries
 - Heavy flavour results test eebb RL and eecc couplings directly vo
- Leptoquark exchange:
 - Again, modify cross-section and asymmetries
 - Heavy flavour results test 2nd
 (c) and 3rd
 (b) generation LQ
 couplings
 - Limits are complementary to those from HERA + Tevatron

17th August 2004

- LEP1/SLD heavy flavour electroweak results are final
 - (Small theoretical QED issue still to be resolved)
 - Huge amount of work by many people over many years
 - Sophisticated analyses to squeeze maximum out of the data
 - Standard Model is impressively verified
 - Prediction of m_{top}, m_w, m_H,...
 - $\sim 3\sigma$ discrepancy between A_{FB}^{b} from LEP and A_{LR} from SLD
 - No evidence of systematic problems with A_{FB}^b on level needed to explain this effect ... a statistical fluctuation or new physics?
 - An intriguing puzzle left from the LEP/SLD era for the next generation
- LEP2 heavy flavour electroweak results still being finalised
 - Publishing of final results on complete datasets ongoing
 - No surprises so far good agreement with Standard Model predictions

LEP asymmetries vs energy

7 q

e

q