— Bose Einstein Correlations — W final state interactions from OPAL

Oliver Pooth

on behalf of the OPAL collaboration

pooth@physik.rwth-aachen.de

III. Phys. Inst. B RWTH Aachen

based on: hep-ex/0403055

Introduction to Bose-Einstein Correlations

Identical bosons obey Bose-Einstein statistics:

Enhancement of identical bosons close in phase space

In e⁺e⁻-annihilations BEC in charged particle pairs are unambiguously established in Z^0 , W events (e.g.: in e⁺e⁻ \rightarrow W⁺W⁻)

∝ 1.4

1.3

1.2

1.1

Main interest at LEP-2 ($e^+e^- \rightarrow W^+W^-$):

Is there evidence for BEC between particles coming from different W's (inter-WW BEC)?

Consequence:

Systematic uncertainty in the determination of the W mass in the 4-quark channel Initial predictions for ΔM_W^{4q} : 0 – 100 MeV/c²

Latest LEP W mass combination: $\Delta M_{W}^{BEC}(4q) = 35 \text{ MeV/c}^2$

OPAL data 1997-1999

 $W^+W^- \rightarrow q_1\overline{q_2}q_3\overline{q_4} \rightarrow 4$ jets

Space-time overlap:

- Typical separation of the two W decay vertices: 0.1 fm
- Scale of hadronization: O(fm)

String model (in absence of CR) 2 independent strings:

If BEC affect particles from different W's (inter–WW BEC), a transfer of particles and/or momentum can disturb the W mass determination from the invariant 2-jet mass.

Inter-WW BEC extraction methods

BEC effects are studied in terms of 4-momentum differences

$$Q^2 = -(p_1 - p_2)^2$$

BEC traditionally studied with two-particle correlation function:

$$\rho(p_1, p_2) = \frac{1}{N_{ev.}} \frac{\mathrm{d}n_{\mathrm{pairs}}}{\mathrm{d}Q}$$

$$R(p_1, p_2) = \frac{\rho(p_1, p_2)}{\rho_0(p_1, p_2)}$$

 ρ_0 : reference without BEC

- unlike sign charged particle pairs
- Monte Carlo without BEC
- 'mixed' events

phenom. parametrization in MC: $R(Q) \approx (1 + \lambda \cdot \exp(-r^2Q^2))$

- r: source radius
- **J** λ : BEC strength

Samples: WW \rightarrow qqqq, qql ν

energy range [GeV]	WW→qqqqq	WW \rightarrow qql ν
183–192	1721	1720
196–200	1290	1300
> 200	1459	1513
all	4470	4533

GeV

WW \rightarrow 4q sample contain 15% background, mainly $Z^{0*}/\gamma \rightarrow$ 4 jets. Reduced to 8% by tightening the standard OPAL WW selection. WW \rightarrow 4q signal reduced: 17% Bg subtracted with BEC MC.

Samples: WW \rightarrow qqqq, qql ν

👂
$$\,$$
 680 pb $^{-1}$ @ 183–209 GeV

4

energy range [GeV]	WW→qqqq	WW $ ightarrow$ qql $ u$
183–192	1721	1720
196–200	1290	1300
> 200	1459	1513
all	4470	4533

WW \rightarrow 4q sample contain 15% background, mainly $Z^{0*}/\gamma \rightarrow$ 4 jets. Reduced to 8% by tightening the standard OPAL WW selection. WW \rightarrow 4q signal reduced: 17% Bg subtracted with BEC MC.

Samples: WW \rightarrow qqqq, qql ν

energy range [GeV]	WW→qqqq	$WW \rightarrow qql u$
183–192	1721	1720
196–200	1290	1300
> 200	1459	1513
all	4470	4533

WW \rightarrow 4q sample contain 15% background, mainly $Z^{0*}/\gamma \rightarrow$ 4 jets. Reduced to 8% by tightening the standard OPAL WW selection. WW \rightarrow 4q signal reduced: 17% Bg subtracted with BEC MC.

MC implementation of BEC:

PYBOEI/PYTHIA reshuffles particle momenta after fragmentation to simulate BEC effect

option 1: full BEC (intra-W + inter-WW BEC)

option 2: only intra-W BEC, no inter-WW BEC

option 3: no BEC

PYBOEI/PYTHIA parameters tuned to Z^0 data.

Tested on WW \rightarrow qql ν

MC Tuning

BEC parameters adjusted to Z^0 data to better than 2% per Q-bin, main QCD/frag. parameters retuned

(same χ^2 /d.o.f. as for standard OPAL (PYTHIA/JETSET) tune).

- $N_{\pm\pm}$: number of like-sign pairs
- N^{no-BECMC}: number of like-sign pairs in standard OPAL MC w/o BEC
 - small discrepancy from multiplicity constraint in PYBOEI/PYTHIA

Analysis à la Chekanov, De Wolf, Kittel

Eur.Phys.J C6(1999) 403 & hep-ph/0101243

Access to inter-WW BEC directly from data.

In the absence of inter–WW correlations the 2-particle density ρ for like sign and unlike sign pairs can be written as

$$\rho^{WW \to 4q} = 2 \cdot \rho^{W \to 2q} + \rho^{WW_{mix}}$$

- W \rightarrow 2q: qql ν sample without the leptonic part
- Solution \mathbb{P} WW_{mix}: event made of 2 independent W \rightarrow 2q events, use only pairs of particles from different W's

Construct BEC sensitive distributions:

$$\mathsf{E.g.:}\ \Delta\rho(Q) = \rho_2^{WW \to 4q}(Q) - 2 \cdot \rho_2^{W \to 2q}(Q) - \rho_{mix}^{WW_{mix}}(Q)$$

Event mixing technique

- Take semi-leptonic events and remove the leptonic part
- Take events that are in the same 'detector region'
 Same polar angle of W direction θ_W (sum over all selected tracks and clusters)
- \checkmark W⁺ with W⁻ (from lepton charge), same E_{cm} within 5 GeV
- Apply rotation procedure

 φ rotation for all particle momenta of one half event laying on the surface of a diabolo.

Flip to the opposite hemisphere if necessary.

Mixed events have to pass the 4q event selection (26% rejected).

Check with event shapes and single particle spectra (MC without correlations)

Check mixing

Left: Single particle spectra: a) rapidity b) p_T , c) azimuthal angle Φ Right: Event shape distributions: a) Thrust b) Oblateness c) aplanarity

Sensitive test distributions

$$\begin{aligned} & \Delta \rho(Q) = \rho_2^{WW \to 4q}(Q) - 2 \cdot \rho_2^{W \to 2q}(Q) - \rho_{mix}^{WW_{mix}}(Q) \\ & \mathcal{I} = \int_0^{Q_{max}} \Delta \rho(Q) dQ \text{ (bin-to-bin statistical fluctuations are reduced)} \\ & \mathcal{I}(Q) = \Delta \rho(Q) / \rho_{mix}^{WW_{mix}}(Q) \text{ (inter-source correlation function)} \\ & \mathcal{D}(Q) = \frac{\rho_2^{WW \to 4q}}{2 \cdot \rho_2^{W \to 2q} + \rho_{mix}^{WW_{mix}}} \end{aligned}$$

To disentangle BEC from other possible correlation effects:

•
$$\delta \rho(Q) = \Delta \rho(\pm, \pm) - \Delta \rho(+, -)$$

• $\Delta_I(Q) = \delta_I(\pm, \pm) - \delta_I(+, -)$
• $d(Q) = D(\pm, \pm)/D(+, -)$
• $D'(Q) = \frac{D(Q)}{D(Q)_{MC,w/o \text{ inter-WW BEC}}}$
If inter-WW BEC do not exist:
 $\Delta \rho(Q) = \delta \rho(Q) = J = 0$
 $D(Q) = D'(Q) = d(Q) = 1$

RNTH RHEINSCH HESTFALSCHE HESTFALSCHE ACHEN

Uncertainties

Systematic errors:

- Track selection
- **Background in WW** \rightarrow qql ν by leaving out τ events
- \blacksquare Event selection for WW \rightarrow qqqq, likelihood weight variation
- Monte Carlo correction for $Z^{0*}/\gamma \rightarrow 4$ jets
- Event mixing procedure (vary angle and energy matching)

Colour reconnection:

negligible when $\rho^{WW \to 4q}$ scaled to have the same mean particle pair multiplicity as $\rho^{WW_{mix}}$

Statistical errors:

Statistical sampling technique instead of conventional error propagation to account for bin-to-bin correlations. Using the full covariance matrix.

Results: $\Delta \rho$, J

data is 2.2 σ below the full BEC in PYBOEI/PYTHIA

Results: D(Q), d(Q)

fit empirical parametrization: $f(Q) = N(1 + \delta \cdot Q)(1 + \Lambda \cdot \exp(-Q/R))$

(*R* determined by fit to full BEC)

Fit to D(Q) and d(Q)

measured values of Λ and Λ_d differ from full-BEC by 1.5 and 2.1 standard deviations, resp.

Others: $\delta_I(Q)$, $\Delta_I(Q)$

 \Rightarrow No hint for full-BEC in data

Sensitivity

Compare the difference between the predictions of the full-BEC and intra-W-BEC, scaled by the total uncertainty of the measurement from data.

- \Rightarrow comparable power:
- 🍠 J: 2.2
- 🥒 Λ: 2.3
- 🥒 Λ': 2.0
- $\Lambda_d: 1.8$

For the purpose of setting a limit on the amount of inter-WW BEC to be considered as a systematic uncertainty for the W mass, take the measured data plus one σ as a bound on the fraction of the full-BEC PYBOEI/PYTHIA prediction consistent with data.

Conclusion & Outlook

- Within the data statistics available no inter-WW BEC have been observed by the OPAL experiment
- Inter-WW BEC effects of the size predicted by PYBOEI/PYTHIA are disfavoured
- However, limited statistics do not permit them to be completely excluded

Outlook:

Combination of the data from all four LEP experiments will be required to draw a firm conclusion on the existence or absence of inter-WW BEC.

Model independent limits for inter-WW BEC using the combined LEP data. W mass uncertainty $< 20 \text{ MeV/c}^2$?

