QCD Studies and α Measurements from e⁺e⁻ Annihilations at LEP

Stefan Söldner-Rembold (Manchester) on behalf of the LEP collaborations

18 August 2004 Beijing, China

Outline:

- Event Selection and Data Samples
- Event Shapes at LEP1 and LEP2 energies
- Events Shapes using Radiative Hadronic Events
- Studies of Power Law Corrections
- Jet Rates

(charged particle multiplicity distributions omitted)

ALEPH:	5-0075, Eur. Phys, J. C35, 457 (2004)
DELPHI:	5-0748, hep-ex/0400611, accepted by EPJC
	5-0731, to be submitted to EPJC
L3:	5-0235, hep-ex/0406049, submitted to Phys.Rept
OPAL:	5-0515, OPAL Physics Note 519 (prel.)
	5-0527, submitted to EPJC
	5-0600, OPAL Physics Note 527 (prel.)

Event Selection and Data Samples

Ecm	L	Events	Backg.
(GeV)	(pb-1)		%
91	41	>10^6	<1
133	12	806	<1
161	11	319	5
172	10	257	10
183	57	1319	12
189	174	3578	13
200	208	3528	15
206	216	3500	15

typical numbers (ALEPH, 1994-2000):

- main background from WW, $\mathbf{ZZ} \rightarrow$ four fermions

 events with Intial State Radiation (ISR) need to be identified/removed

Event Selection and Data Samples

Ecm	L	Events	Backg.
(GeV)	(pb-1)		%
91	41	>10^6	<1
133	12	806	<1
161	11	319	5
172	10	257	10
183	57	1319	12
189	174	3578	13
200	208	3528	15
206	216	3590	15

typical numbers (ALEPH, 1994-2000):

- main background from WW, $\mathbf{ZZ} \rightarrow$ four fermions

 events with Intial State Radiation (ISR) need to be identified/removed

Event Shape Observables

Inclusive quantities which characterize geometry of event (planar, spherical, pencil-like..)

Infra-red safe (soft gluon emission) Collinear stable (collinear parton branchings)

Example: Thrust (or better 1-Thrust)

Thrust axis \vec{n}_{T} is chosen to maximize the sum of the absolute momentum components of all particles projected on that axis

$$\boldsymbol{T} = \boldsymbol{max}_{\vec{n}_{\tau}} \left(\frac{\sum_{i} |\boldsymbol{p}_{i} \cdot \vec{\boldsymbol{n}_{\tau}}|}{\sum_{i} |\boldsymbol{p}_{i}|} \right)$$

Six Standard Event Shape Observables

Thrust 1-T:

Thrust axis divides event into two hemispheres

Heavy jet mass M_H:

Heavier scaled jet mass of the two event hemisphere

C-parameter

Sum of eigenvalues of the momentum tensor

Total jet broadening **B**_T and wide jet broadening **B**_w:

Sum (Maximum) of the jet broadenings of the two hemispheres

y₂₃:

Transition value between 2 and 3 jets for the Durham algorithm

- Calculated from all neutral and charged particles in the event (tracks/clusters)
- Data and Monte Carlo are usually in very good agreement
- Simple bin-by-bin unfolding methods can therefore be used

Four-fermion background subtracted (dominates at high y)

Event shape variables depend on quark mass

Wide jet broadening B_w

Two theory predictions exist for all six observables y:

$$\boldsymbol{R}(\boldsymbol{y}) = \int \frac{1}{\sigma} \frac{\boldsymbol{d} \sigma}{\boldsymbol{d} \boldsymbol{y}} \boldsymbol{d} \boldsymbol{y}$$

1) $O(\alpha_s^2)$ calculation

$$\boldsymbol{R}_{\alpha_{s}^{2}}(\boldsymbol{y}) = \boldsymbol{A}(\boldsymbol{y})\overline{\alpha}_{s} + \boldsymbol{B}(\boldsymbol{y})\overline{\alpha}_{s}^{2} \quad \text{with} \quad \overline{\alpha}_{s} = \frac{\alpha_{s}}{2\pi}$$

Matrix elements – best for multi-jet region (high y)

2) NLLA calculation

$$\boldsymbol{R}_{NLLA}(\boldsymbol{y}) = (\boldsymbol{1} + \boldsymbol{C}_{1} \overline{\alpha}_{s} + \boldsymbol{C}_{2} \overline{\alpha}_{s}^{2}) \boldsymbol{e}^{(\boldsymbol{L}\boldsymbol{g}_{1}(\alpha_{s}\boldsymbol{L}) + \boldsymbol{g}_{2}(\alpha_{s}\boldsymbol{L}))} \quad \text{with} \quad \boldsymbol{L} = \log \frac{1}{\boldsymbol{V}}$$

Summation of leading logarithms – best for two-jet region (low y)

 α_s is obtained by fitting the event shape distributions with theory predictions

best description if we match both calculations:

 $\log \boldsymbol{R}(\boldsymbol{y}) =$

 $\log R_{\alpha_s^2}(y) + \log R_{NLLA} - extra terms$

where 'extra terms' are α_s^2 terms in the NLLA calculation

'(modified) log R matching'

Jet Broadening B_T

M. Ford, LEP-QCD WG, prel. combination using final inputs

 $\alpha_{s}(M_{z}) = 0.1202 \pm 0.0003(stat) \pm 0.0007(expt) \pm 0.0015(hadr) \pm 0.0044(theo)$

Sources of uncertainty

 $\alpha_{s}(M_{z}) = 0.1202 \pm 0.0003(stat) \pm 0.0007(expt) \pm 0.0015(hadr) \pm 0.0044(theo)$

- Experimental

cut variations, detector corrections etc.

- Hadronization

comparing HERWIG, ARIADNE and PYTHIA

- Theory (see R. Jones et al, JHEP 12, 7 (2003))

variation of renormalisation scale $0.5 < x_{\mu} < 2$ variation of logarithmic rescaling factor $2/3 < x_{L} < 3/2$ 'modified log(R) matching' vs 'modified R matching' variation of kinematic cutoffs

Relative weight of results in global fit:

46% LEP1

54% LEP2

Measurement of α_{s} in Radiative Hadronic Events

Initial State Radiation (ISR)

Final State Radiation (FSR)

 α_{s} at reduced scale \sqrt{s}

Assumption: no interference between photon emission and QCD process

Photon Identification

Likelihood used for π^0/γ separation

based on cluster shape fit in calorimeter

 $\alpha_{s}(M_{z}) = 0.1176 \pm 0.0012(stat)^{+0.0093}_{-0.0085}(expt)$

Power Law Corrections

non-perturbative corrections can be derived using

- Monte Carlo generators
- analytic power corrections

 (Yu.Dokshitzer, G.Marchesini, B.R.Webber)

 $\alpha_0(\mu_l) = \frac{1}{\mu_l} \int_0^{\mu_l} \alpha_s(\mathbf{k}) d\mathbf{k}$ with $\mu_l = \text{infrared matching scale}$

similar result from DELPHI

Different clustering algorithms (Jade, Durham, Cambridge) are used to measure jet rates

good data/MC agreement

α Measurements from Four-jet Rates

$$\mathbf{R}_{4}(\mathbf{y}) = \mathbf{B}(\mathbf{y}) \alpha_{s}^{2} + (\mathbf{C}(\mathbf{y}) + 2\mathbf{B}(\mathbf{y})\mathbf{b}_{0} \ln \mathbf{x}_{\mu}) \alpha_{s}^{3}$$
$$\mathbf{b}_{0} = \frac{33 - 2n_{f}}{12\pi}$$

simultaneous fit to four-jet rate of optimized scale $x_{\mu}^{\ opt}$ and $\alpha_{s}^{\ s}$

average \sqrt{s}	$\alpha_{\rm S}$	stat.	exp.	hadr.	scale
in GeV					
91.3	0.1191	0.0001	0.0010	0.0023	0.0030
134.0	0.1085	0.0038	0.0039	0.0027	0.0035
177.5	0.1094	0.0022	0.0027	0.0013	0.0016
197.2	0.1100	0.0009	0.0025	0.0011	0.0017

With increasing energy

- experimental uncertainty increases
- hadronisation and scale uncertainties decrease

 $\begin{aligned} &\alpha_{\rm s}({\rm M_Z}) = 0.1178 \pm 0.0012({\rm stat} + {\rm expt}) \pm 0.0031({\rm hadr}) \pm 0.0014({\rm scale}) \quad {\rm DELPHI} \; {\rm Durham} \\ &\alpha_{\rm s}({\rm M_Z},) = 0.1175 \pm 0.0010({\rm stat} + {\rm expt}) \pm 0.0027({\rm hadr}) \pm 0.0007({\rm scale}) \quad {\rm DELPHI} \; {\rm Cambridge} \\ &\alpha_{\rm s}({\rm M_Z},) = 0.1208 \pm 0.0022({\rm stat} + {\rm expt}) \pm 0.0019({\rm hadr}) \pm 0.0024({\rm scale}) \quad {\rm OPAL} \; {\rm Durham} \\ &\alpha_{\rm s}({\rm M_Z},) = 0.1202 \pm 0.0008({\rm stat} + {\rm expt}) \pm 0.0015({\rm hadr}) \pm 0.0044({\rm scale}) \quad {\rm LEP} \; {\rm Event} \; {\rm Shapes} \end{aligned}$

Summary

All four LEP experiments have published their final event shape analysis

 $\alpha_s(M_z)$ is measured using both Monte Carlo simulations and power law corrections to take into account non-perturbative effects

A prelimininary combination of the final results has been presented

The running of α_s has been studied over a wide range of energies using radiative hadronic events

Good MC/data agreement for n-jet rates has been observed and α_s measurements have been performed using four-jet rates

thanks to Matthew Ford and Roger Jones