



# W mass and width measurement @ LEP

#### Francesco Spano' University of Chicago On behalf of the OPAL collaboration

•W boson in SM

Experimental methods

Sytematic Uncertainties

•Current Results

Outlook and conclusion

Lake Louise Winter Institute 15<sup>th</sup> -21<sup>st</sup> February 2004



### Why W Boson(s)?



 $W^{\scriptscriptstyle +}$  and  $W^{\scriptscriptstyle -}:\,$  SM mediators of weak interactions

Existance confirms (with Z<sup>0</sup>) Standard Model SU(2)×U(1) gauge symmetry

Are massive: related to SM EWK symmetry breaking  $\rightarrow$  Higgs

 $M_{w}$  and  $\Gamma_{w}$  are key parameters of SM

Precise and unbiased measurement by direct production Stringent test of SM, constraints on SM Higgs Boson mass and on physics beyond SM (SUSY?)

LEP2 : ideal clean environment for WW studies above WW threshold : direct reconstruction @ threshold : M<sub>w</sub> measurable from WW cross section

Lake Louise 2004 15<sup>th</sup> Feb W mass and width @ LEP F Spano' 2





#### Typical performance

Complex multi-steps event selections (cuts, likelihood discriminants, neural nets) for efficient and clean identification

| Chan | Efficiency | Purity |
|------|------------|--------|
| lvlv | 70%        | 90%    |
| qqlv | 80%        | 85%    |
| pppp | 80%        | 80%    |

Lake Louise 2004 15<sup>th</sup> Feb W mass and width @ LEP

F Spano' 4



### **Event Reconstruction**



Lepton identification in qqlv and  $lvlv \rightarrow no rec$ , separate analysis (O,A)

Jet reconstruction (DURHAM): 2jets in qqlv, 4 jets in qqqq . (D,O) allow for additional gluon jet.

Kinematic fit: beam energy knowledge to constrain total four momentum of event





invariant mass

Jet pairing in qqqq: consistency with W decay kin. (A) or multivariate sel/Kin.fit prob. (O,L) or use all pairings (D)

Lake Louise 2004 W mass and width @ LEP F Spano' 5 15<sup>th</sup> Feb



### W mass and width extraction

<mark>ب، 300</mark>

\$ 8<sub>250</sub>

MC





Maximum Likelihood fit to extract  $M_W$  $\Gamma_w$ : from SM relation or 2 parameter Fit

#### Different likelihood building methods

Breit Wigner (O): asymmetric BW, robust for preliminary estimation Convolution (D,O): physics function  $\otimes$ detector response, statistically powerful

ALEPH Preliminary evgg • Data (Luminastry = 962.6 pb<sup>-1</sup>)

Reweighting (A,L,O): MC shape reweighted for varying assumed W mass,least biased, fully exploit MC reco

Lake Louise 2004 15<sup>th</sup> Feb W mass and width @ LEP

F Spano' 6

## Systematic Uncertainties



Summer 2003

sample except OPAL 2000 data (~220 pb<sup>-1</sup>) •gglv and qqqq have similar stat. uncertainty •qqqq has only 10% weight in comb. (FSI)

•full LEP

| source Systematic          |      | natic Err | c Error on $M_W(MeV)$ |  |
|----------------------------|------|-----------|-----------------------|--|
|                            | qqlv | qqqq      | Combined              |  |
| QED(ISR/FSR,etc)           | 8    | 8         | 8                     |  |
| Hadronisation              | 19   | 18        | 18                    |  |
| Detector Systematics       | 14   | 10        | 14                    |  |
| LEP Beam Energy            | 17   | 17        | 17                    |  |
| Colour Reconnection        | -    | 90        | 9                     |  |
| Bose-Einstein Correlations | -    | 35        | 3                     |  |
| Other                      | 4    | 5         | 4                     |  |
| Total Systematic           | 31   | 101       | 31                    |  |
| Statistical                | 32   | 35        | 29                    |  |
| Overall                    | 44   | 107       | 43                    |  |
|                            |      |           |                       |  |

Lake Louise 2004 15<sup>th</sup> Feb W mass and width @ LEP



### LEP Beam Energy



Kinematic fit: energy scale from  $E_{beam} \longrightarrow \frac{\delta M_W}{M_W} \sim \frac{\delta E_{beam}}{E_{beam}}$ 

E<sub>beam</sub> measured by:

LEP (directly)

Use 16 Nuclear Magnetic Resonance probes calibrated with Resonant Depolarisation (LEP1) and flux loop measurements (main syst. uncertainty)

Cross check with LEP spectrometer and energy loss (Q<sub>F</sub> vs RF) method

Experiments (indirectly from physics events)

Compare Z peak position in data and  $MC \rightarrow$  infer  $E_{beam}$  in  $e^+e^- \rightarrow Z(\gamma)$  (Radiative Return)

Lake Louise 2004 15<sup>th</sup> Feb W mass and width @ LEP

Negligible impact on  $\,\Gamma_{W}$ 

All results: consistent

δE<sub>beam</sub> = 21 Mev From direct measurement

Current  $\delta M_W$ =17 MeV







### **Colour Reconnection**



Colour cross-talk between Ws: bias in gggg but not gglv.



SK1 k parameter varies CR strength

Lake Louise 2004 15<sup>th</sup> Feb W mass and width @ LEP

**F Spano'** 11





### LEP2 and the others



SM consistency



**Good Direct - Indirect consistency** 

Low values of Higgs masses are preferred

OPAL 2000 data to be included soon

Lake Louise 2004W mass and width @ LEPF Spano'1315<sup>th</sup> Feb

