Scaling violations of quark and gluon jet fragmentation functions at e^+e^- annihilations

Marek Taševský

Universitaire Instelling Antwerpen

OPAL Collaboration, CERN

Unbiased jets are used in theory calculations.

The measured fragmentation function is defined here as

$$\frac{1}{N_{\rm jet}(\rm scale)} \frac{\mathrm{d} N_{\mathbf{p}}(\mathbf{x}_{\rm E}, \rm scale)}{\mathrm{d} \mathbf{x}_{\rm E}}$$

number of charged non-identified particles in bins of $x_{\rm E} = \frac{E_{\rm part}}{E_{\rm jet}}$ and scale normalized to number of jets in bins of scale. $E_{\rm jet} =$ energy of the jet to which the particle with energy $E_{\rm part}$ is assigned.

If there is a consistency, then:

- Q_{jet} scale is an appropriate scale for hadron production in 3-jet events.
- Comparison of measured biased jets with theory makes sense.

 θ = angle between the jet with E_{jet} and the closest jet.

Each of the eight bands correspond to jets with the same energy but with a different angle to the nearest jet. The jet multiplicity depends on the event topology, not just the jet energy.

 Q_{jet} scale reduces the jet energy and topology dependences compared to the scale E_{jet} .

Event Selection

• OPAL DATA:

LEP1 (1993–1995): $\sqrt{s} = 91.2 \text{ GeV}, \mathcal{L} = 130 \text{ pb}^{-1}$ LEP2 (1997–2000): $\sqrt{s} = 183-209 \text{ GeV}, \mathcal{L} = 690 \text{ pb}^{1}$

- Standard hadronic event selection applied
- Reduction of ISR bg in LEP2 data: √s - √s' < 10 (20*) GeV
 Reduction of 4-fermion bg (WW,ZZ→4f) in LEP2 data:

Event weight $W_{qcd} > -0.5$

• 3-jet event selection:

Durham (Cone, Cambridge for syst. studies) jet alg. forced to find 3 jets

- Particle multiplicity per jet ≥ 2
- Sum of inter-jet angles $\geq 358^{\circ}$
- Polar jet angle $|\cos \theta_{jet}| \le 0.90 \ (0.95^*)$
- Corrected jet energy $\geq 5 \text{ GeV}$
- Inter-jet angle $\geq 30^{\circ}$

$$E_i^{\text{calc}} = \frac{\sin\theta_{jk}\sqrt{s}}{\sin\theta_{ij} + \sin\theta_{jk} + \sin\theta_{ik}}$$

Energy-momentum conserv. + planar massless kinem.

Jets ordered in energy: Jet 1 = the most energetic jet. *= used in LEP2 3-jet analysis

Correction procedure

- **1.step:** bin-by-bin subtraction of 4f-background from LEP2 data using GRC4F MC model
- 2.step: unfolding of detector level jets in data and MC to the level of pure quark and gluon jets using purity matrices obtained from MC information
 - a) **B-TAG** method for biased and unbiased jets
 - based on neural network
 - output value from the neural net, VNN, serves to separate udsc, b and gluon jets
 - b) Energy-ordering method for biased gluon jets
 - separates between udscb and gluon jets
 - alternative to B-TAG
- **3.step:** bin-by-bin correction for detector and ISR effects

B-TAG for biased jets

Any of three jets is used to extract frag.function.

• Define jets containing sec.vtces with $\mathbf{VNN} > \mathbf{a}$ as *b*-tag jets.

• Define jets containing sec.vtces (if found) with **VNN**<**b** as *anti-tag jets*.

 \rightarrow The b-tag jet and gluon jet samples are taken from events with one or two b-tag jets and at least one anti-tag jet.

 \rightarrow If one b-tag and two anti-tag jets found, the lower energy anti-tag jet enters the gluon jet sample.

 \rightarrow The udsc jet sample is formed by all three jets in events with no b-tag jet.

udsc sample: 3 jets per eventb-tag sample: 1-2 jets per eventgluon sample: 1 jet per event

To obtain pure udsc, b or gluon jets, one has to solve

ι	incor			I	oure
$\begin{pmatrix} D_1 \end{pmatrix}$		$\left(\begin{array}{c} P_{\mathrm{ll}} & P_{\mathrm{lb}} & P_{\mathrm{lg}} \end{array} \right)$		$\left(\begin{array}{c} D_1 \end{array}\right)$	
$D_{\rm b}$	$(x_{\rm E},Q) =$	$P_{ m bl} \; P_{ m bb} \; P_{ m bg}$	(Q)	$D_{ m b}$	$(x_{\rm E},Q)$
$\left(D_{\mathrm{g}} \right)$		$\langle P_{\rm gl} P_{\rm gb} P_{\rm gg} \rangle$		$\left(\begin{array}{c} D_{\mathrm{g}} \end{array} \right)$	

E.g. $P_{\rm lb}$ = probability that a jet from the udsc jet sample comes from a b-quark.

Overall $P_{\rm bb}$ ($P_{\rm gg}$) is 90% (84%) for LEP1 data and 60% (80%) for LEP2 data.

 $\circ \sqrt{s} = 91.2 \text{ GeV}, \quad VNN_b > 0.8 \land VNN_g < 0.5$

• $\sqrt{s} = 183 - 209 \text{ GeV}, \text{ VNN}_{b} > 0.65 \land \text{ VNN}_{g} < 0.5$

Energy-ordering for biased jets

Based on QCD prediction that in 3-jet event the Jet 3 most likely comes from a gluon.

- \rightarrow quark jet sample formed by jets 2
- \rightarrow gluon jet sample formed by jets 3

Unfolding to the level of pure quark and gluon jets:

$$\begin{pmatrix} D_2 \\ D_3 \end{pmatrix} (x_{\rm E}, Q) = \begin{pmatrix} P_{2\rm q} & P_{2\rm g} \\ P_{3\rm q} & P_{3\rm g} \end{pmatrix} (Q) \begin{pmatrix} D_{\rm q} \\ D_{\rm g} \end{pmatrix} (x_{\rm E}, Q)$$

E.g. P_{2q} = probability that a jet 2 comes from a quark.

B-TAG for unbiased jets

 \rightarrow If two sec.vertices with VNN>a found in an event, both hemispheres enter the b-tag sample.

 \rightarrow In remaining events, both hemi's enter the udsc sample. Unfolding to the level of pure udsc and b-quark hemispheres:

$$\begin{pmatrix} D_l \\ D_b \end{pmatrix} (x_{\rm E}, Q) = \begin{pmatrix} P_{\rm ll} & P_{\rm lb} \\ P_{\rm bl} & P_{\rm bb} \end{pmatrix} (Q) \begin{pmatrix} D_l \\ D_b \end{pmatrix} (x_{\rm E}, Q)$$

E.g. $P_{\rm bb} =$ prob. that a b-tag hemi comes from a b-quark. Overall $P_{\rm bb}$ ($P_{\rm ll}$) is 99.7% (79%) for LEP1 data and 75% (89%) for LEP2 data.

ENERGY-ORDERING

• Applicable only in the overlap region of jets 2 and 3

Event Statistics for Data

UNBIASED JET ANALYSIS (INCL. HADR. EVENTS):

Selection	LEP1	LEP2	BG(LEP2)
Hadronic events	2 387 227	10 866	11%
udsc hemisph.	4 740 774	20 146	11%
b-tag hemisph.	33 680	1 586	5%

BIASED JET ANALYSIS (3-JET EVENTS):

Selection	LEP1	LEP2	BG(LEP2)
Hadronic events	2 387 227	12 653	14%
three-jet events	965513	$6\ 177$	16%
udsc jets	$2 \ 675 \ 679$	16 344	16%
b-tag jets	83 549	820	9%
Gluon jets	73 620	729	9%

Systematics studies

Sources:

MC study of bias

OPAL Herwig 6.2

- All FFs at low $x_{\rm E}$ with low scales: hadron mass effect
- b-FF at high $x_{\rm E}$ with low scales: b-quark mass effect
- All FFs in last scale bin and gluon-FF at $x_{\rm E} > 0.4$: **BIAS**

NLO calculations

- 1. **Kniehl, Kramer, Pötter** (KKP) [Nucl.Phys.B582 (2000) 514]
- Kretzer (Kr)
 [Phys. Rev. D62 (2000) 054001]
- 3. Bourhis, Fontannaz, Guillet, Werlen (BFGW) [hep-ph 0009101]
- \rightarrow They provide NLO predictions of

 $\frac{1}{\sigma_{\text{tot}}} \frac{\mathrm{d}\sigma^{(e^+e^- \to \gamma/Z \to hX)}}{\mathrm{d}x_{\text{E}}}$ based on unbiased jet definition

 $\rightarrow \alpha_s$ accuracy of hard subprocess $\sigma^{(e^+e^- \rightarrow q\bar{q})}$

 $\rightarrow \alpha_s^2$ accuracy of splitting functions

NLO corrections to $\sigma^{(e^+e^- \to q\bar{q}g)}$ not known yet but they will depend on a jet finder used

Assumption

Biased jet results consistent with unbiased jet results NLO corrections to 3-jet processes small \downarrow Comparison of biased jet results to theory meaningful

The three groups use $\mu_r = \mu_f = hard scale Q$ but <u>differ</u> in choice of data sets used in fits - definition of the scale Q - fit ranges - prescription for number of active flavours - treatment of heavy quarks and gluons.

- Consistency between biased and unbiased jet results
- Large spread of the NLO predictions

- Consistency between biased and unbiased jet results
- Large spread of the NLO predictions

• Results from measured biased and unbiased jets consistent with published unbiased jet results

• Low $x_{\rm E}$ with low scale: hadron mass effect in unbiased jets

• Differences between NLO predictions at very low and very high $x_{\rm E}$

- Differences between NLO predictions at very low and very high $x_{\rm E}$
- Data agree with TPC and DELPHI unbiased jet results

- Differences between NLO predictions at very low and very high $x_{\rm E}$
- Data agree with OPAL boost algorithm results

Very good description by all three MC models

measured (un)biased jets compared to MC (un)biased jets
OPAL tune for LEP1 data still good for LEP2 data

Very good description by all three MC models

measured (un)biased jets compared to MC (un)biased jets
OPAL tune for LEP1 data still good for LEP2 data

• Good description by all three MC models except for small scales and high $x_{\rm E}$

Charged particle multiplicities

$\sqrt{s} \; [\text{GeV}]$	$\langle n_{ m ch}^{ m incl} angle$
91.2	$20.93 \pm 0.01 \pm 0.23$
183 - 189	$26.80 \pm 0.24 \pm 0.46$
192 - 202	$27.68 \pm 0.26 \pm 0.50$
204 - 209	$27.75 \pm 0.29 \pm 0.67$

$\sqrt{s} \; [\text{GeV}]$	$\langle n_{ m ch}^{ m udsc} angle$
91.2	$20.32 \pm 0.03 \pm 0.27$
183 - 189	$26.43 \pm 0.26 \pm 0.81$
192 - 202	$27.38 \pm 0.31 \pm 0.85$
204 - 209	$26.87 \pm 0.32 \pm 0.99$

$\sqrt{s} \; [\text{GeV}]$	$\langle n^{ m b}_{ m ch} angle$
91.2	$23.28 \pm 0.09 \pm 0.70$
183 - 209	$30.01 {\pm} 0.53 {\pm} 0.82$

The results are found in agreement with the previous measurements and with predictions of PYTHIA 6.1, HERWIG 6.2 and ARIADNE 4.08.

Conclusions

	biased jets	unbiased jets
	$Q_{ m jet}~[{ m GeV}]$	$\sqrt{s}/2 \; [{ m GeV}]$
udscb	$4\!-\!42.0$	45.6; 91.5 - 104.5
udsc	4 - 104.5	45.6; 91.5 - 104.5
b	4 - 104.5	45.6; 91.5 - 104.5
gluon	4 - 70.0	

- 2. The results found to be consistent with all published results. Consistency between biased and unbiased jet results suggests that Q_{jet} is an appropriate choice of scale in events with a general 3-jet topology. This consistency also justifies the comparison with NLO predictions.
- 3. The scaling violation of the gluon jet FFs is observed to be stronger than that of the quark jet FFs.
- 4. The NLO calculations describe well the udsc jet FFs, but much worse the b- and gluon jet FFs.
- 5. The data compared to different fragmentation models. Pythia, Herwig and Ariadne describe the data well except for the range of high $x_{\rm E}$ with small scale for the gluon jet FFs.
- 6. Charged particle multiplicities in udscb, udsc and b events measured and found to be in agreement with previous measurements and with predictions of the three MC models.