Standard Model Results from LEP

Pat Ward University of Cambridge

- Introduction
- Electroweak Physics
- QCD and Two-photon Results

Introduction

 LEP1
 1989–1995
 $\sqrt{s} \sim m_Z$ 4.5M Z events / expt

 LEP2
 1996–2000
 161 < \sqrt{s} < 209 GeV</th>
 10k WW events/expt

- LEP was shut down at the end of 2000, so why are we still giving LEP talks?
- Many physics results still being produced
- In the last 2 years, the 4 LEP experiments (ALEPH, DELPHI, L3 and OPAL) have submitted for publication >100 papers
 About 25% of these were on LEP1 physics
- The 4 expts have submitted > 120 papers to ICHEP04 Majority on Standard Model physics Mostly final results, but some new preliminary results too
- This talk will concentrate on results which have been finalized, or are new, in the last year (but include some older important results too)

Introduction

LEP Standard Model physics covers a wide range of topics; no time in this talk for, e.g.,

- Precise measurement of the τ lifetime (DELPHI) $\tau_{\tau} = 290.9 \pm 1.4 \pm 1.0$ fs (c.f. PDG2004: 290.6 \pm 1.1 fs)
- τ branching ratios and strange spectral functions (DELPHI, OPAL)
- $\mu^+\mu^-$, $\tau^+\tau^-$ and hard-photon production in two-photon collisions (DELPHI, L3, OPAL)
- Excited b-hadrons, $B^0_s \overline{B^0_s}$ oscillations, B spectral moments (DELPHI)

Will give a brief overview of current results; for more details consult the experiments' web pages: http://aleph.web.cern.ch/aleph/

http://delphiwww.cern.ch/ http://l3.web.cern.ch/l3/

http://opal.web.cern.ch/Opal/PPwelcome.html

LEP1 Electroweak Physics

• Z lineshape measurements final

since summer 2000

 $m_{\rm W}$ = 91.1875±0.0021 GeV $\Gamma_{\rm Z}$ = 2.4952±0.0023 GeV $\sigma_{\rm h}^{0}$ = 41.540±0.037 nb R_{ℓ} = 20.767±0.025 $A_{\rm FB}^{0,\ell}$ = 0.01714±0.00095

- New measurement of $A_{\rm FB}^{\rm b}$ (DELPHI)
- ⇒ new LEP heavy-flavour combination

LEP1 Electroweak Physics

- OPAL have published new measurements of $\Gamma_u,\,\Gamma_d$
- Use hadronic events with FSR $(\mathbf{Z} \rightarrow \mathbf{q} \overline{\mathbf{q}} \gamma)$

Enriched in up-type quarks

 $\Gamma_{\rm had} = 2\Gamma_{\rm u} + 3\Gamma_{\rm d}$ $\Gamma_{\rm had+\gamma} \sim 8\Gamma_{\rm u} + 3\Gamma_{\rm d}$

Results:

$$\label{eq:Gamma-1} \begin{split} \Gamma_{\rm u} &= 300^{+19}_{-18} \text{MeV} \\ \Gamma_{\rm d} &= 381^{+12}_{-12} \text{MeV} \end{split}$$

Good agreement with SM

 More precise than earlier measurements (DELPHI, L3, OPAL)

Two-fermion Production at LEP2

- Measure cross-sections and asymmetries for inclusive and 'nonradiative' events
- LEP combination of preliminary measurements
 Good agreement with SM
 ⇒ limits on new physics, e.g. Z',

Infinits off flew physics, e.g. 2,
 Ieptoquarks, RPV squarks, contact
 interactions, extra dimensions

Two-fermion Production at LEP2

• At LEP2 energies, γ -exchange becomes important \Rightarrow can measure γ -Z interference \Rightarrow almost modelindependent determination of m_Z in S-matrix fit

• e.g.DELPHI results $m_Z = 91.1831 \pm 0.0034 \text{ GeV}$ c.f. $m_Z = 91.1863 \pm 0.0028 \text{ GeV}$ from standard LEP1 fit assuming SM interference

- OPAL, DELPHI have finalized two-fermion measurements; new combination when all experiments have final results
- Expect small improvements to $\sigma(q\overline{q})$, but leptons dominated by statistics

WW Cross-sections

- 3 channels: $W^+W^- \rightarrow q\overline{q}q\overline{q}$ $W^+W^- \rightarrow q\overline{q}\ell\overline{\nu}_\ell$ $W^+W^- \rightarrow \ell\overline{\nu}_\ell\ell\overline{\nu}_\ell$
- LEP combination updated with final values from ALEPH, L3
 Final combination awaiting OPAL final results

Good agreement with theoretical expectations

W Branching Ratios

• LEP combination updated with final values from ALEPH, L3

• B(W $\rightarrow \tau \nu$) higher than average of B(W $\rightarrow \mu \nu$) and B(W $\rightarrow e \nu$) by 3σ

Single Vector Boson Production

LEP combination updated with final measurements from ALEPH, L3

Charged Triple Gauge Boson Couplings

- Measured using WW events: σ (WW), $\cos \theta_{\rm W}$, W decay angles
- Also Weu and $u\overline{
 u}\gamma$ channels
- Assuming C, P conservation and gauge constraints: 14 \rightarrow 3 couplings: $g_1^{
 m Z}, \lambda_\gamma, \kappa_\gamma$
- LEP combination: combine $\log \mathcal{L}$ curves including correlated systematics

Charged Triple Gauge Boson Couplings

- L3, OPAL values final, ALEPH, DELPHI values preliminary
- LEP combined results allowing one free parameter:

- Good agreement with Standard Model
- Couplings measured with precision of 2–4%

 LEP combined confidence levels allowing 2 free parameters

Other Gauge Boson Couplings

- Neutral Triple Gauge Boson couplings (ZZ γ , Z $\gamma\gamma$) are zero in SM
- Limits set from ZZ and Z γ channels
- SM Quartic Gauge Couplings either zero or too small to be observed at LEP
- Limits set from WW γ , Z $\gamma\gamma$ and $\nu\overline{\nu}\gamma\gamma$ channels

W Mass Measurement

- A principal aim of LEP2
- Comparison of direct measurement with indirect determination from EW fits is test of SM
- Measure by direct reconstruction of $q\overline{q}$ or $\ell \overline{\nu}_{\ell}$ mass in $W^+W^- \rightarrow q\overline{q}\ell \overline{\nu}_{\ell}$ and $W^+W^- \rightarrow q\overline{q}q\overline{q}$ channels
- Reconstruct event-by-event
 mass using beam energy
 constraint (kinematic fit) to
 improve resolution

• Fit mass distribution $\Rightarrow m_{\rm W}$, using MC to correct for bias

W Mass Measurement

• LEP preliminary values:

 $m_{\rm W}(q\overline{q}\ell\overline{\nu}_{\ell})$ = 80.411±0.032(stat)±0.030(sys) GeV

 $m_{\rm W}(q\overline{q}q\overline{q}) = 80.420 \pm 0.035 (\text{stat}) \pm 0.101 (\text{sys}) \text{ GeV}$

Summer 2003 - LEP Preliminary

- Systematics completely dominate $q\overline{q}q\overline{q}$ channel (and important in $q\overline{q}\ell\overline{\nu}_{\ell}$ channel)
- Combined value:

 $m_{\rm W}$ = 80.412 \pm 0.042 GeV

 What has been happening in last year to improve and finalize measurements?

W Mass Measurement

- Main systematics in $q\overline{q}q\overline{q}$ channel arise from final state interactions
- Separation of W decay vertices ~ 0.1 fm < hadronic scale ~ 1 fm ⇒ W decays have space-time overlap and can exchange colour: Colour Reconnection
- May also be Bose-Einstein Correlations between like-sign particles from different W's
- Both effects may shift measured $m_{\rm W}$ by large amount (\sim 100 MeV) Not included in standard MC used to calibrate $m_{\rm W}$ measurement
- Much effort to measure CR and BEC effects to estimate realistic errors

Colour Reconnection

- L3 results final, ADO preliminary
- Use largest reconnection probability compatible with data to set $\Delta(m_W)$ Current LEP combination uses $\kappa = 2.1$ in SK1 model (~55% reconnected) $\Rightarrow \Delta m_W(q\overline{q}q\overline{q}) = 90 \text{ MeV}$

gion with intra-W region

Colour Reconnection

- Soft particles most affected by FSI
 ⇒ reduce effects with momentum
 cuts or jet cone cuts
 Reduces FSI error at expense of
 statistical error, as jet directions
 less precisely determined
- Final $m_{\rm W}$ analyses will optimize jet reconstruction

DELPHI preliminary SK1 curves

Bose-Einstein Correlations

- BEC between like-sign pions well-established in Z decays
 Do they occur between particles from different W's?
- Currently contributes 35 MeV to $\Delta m_{\rm W}({\rm q}\overline{{\rm q}}{\rm q}\overline{{\rm q}})$

(LUBOEI model)

Bose-Einstein Correlations

- Study using two-particle correlations, normalized to 'no BEC'
- Use $W^+W^- \rightarrow q\overline{q}\ell\overline{\nu}_\ell$ events to estimate intra-W correlations, mixed events (or MC) for kinematic correlations

$$\Delta \rho(Q) = \rho_2^{WW}(Q) - 2 \rho_2^{W}(Q) - 2 \rho_{mix}^{WW}(Q)$$

LEP combined data:
 data=noBE

 $\frac{\text{data-noBE}}{\text{fullBE-noBE}} = 0.23 \pm 0.13$

- DELPHI, L3, OPAL results now final
- L3, OPAL compatible with no inter-W BEC, DELPHI sees significant effect

Prospects for Final $m_{ m W}$ Measurement

- LEP measurements of $m_{\rm W}$ should be finalized soon
- Expect improvements over preliminary measurement
- LEP beam energy uncertainty will decrease from 21 MeV to \sim 10 MeV Final LEP beam energy paper recently submitted for publication
- Analyses in $q\overline{q}q\overline{q}$ channel will be optimized to reduce total error
- Hadronization and detector effects will be better understood
- In absence of systematics, LEP statistical precision \sim 21 MeV With reduced weight for $q\overline{q}q\overline{q}$ channel, probably \sim 25 MeV
- Final total error will probably be in range 32–40 MeV, depending on FSI results

W Width Measurement

Summer 2003 - LEP Preliminary

- Fits to W mass distributions also determine $\Gamma_{\rm W}$
- Preliminary LEP average:

 $\Gamma_{\rm W}$ = 2.150 \pm 0.091 GeV

Standard Model Fit

- Standard Model fit by LEPEWWG uses 17 inputs from LEP, SLD, Tevatron: Z lineshape: m_Z , Γ_Z , σ_{had}^0 , R_ℓ , $A_{fb}^{0,\ell}$ τ polarisation: P_{τ} Polarised lepton asymmetry: \mathcal{A}_ℓ (SLD) Heavy flavour: R_b , R_c , $A_{FB}^{0,b}$, $A_{FB}^{0,c}$, \mathcal{A}_b , \mathcal{A}_c Inclusive hadronic charge asymmetry m_t , m_W , Γ_W
- Updates since summer 2003:
 - Tevatron m_t : 178.0 \pm 2.7 \pm 3.3 GeV
 - LEP1 heavy flavours
 - Theory calculations including full two-loop corrections for $m_{\rm W}$ and $\sin^2 \theta_{\rm eff}^{
 m lept}$ (Awramik, Czakon, Freitas, Weiglein) Shifts predicted value of $m_{\rm H}$ from $\sin^2 \theta_{\rm eff}^{
 m lept}$ alone by ~19 GeV

Standard Model Fit

Summer 2004

- Fit χ^2 /dof = 15.8/13
- 67% correlation between $m_{
 m t}$ and $\log m_{
 m H}$
- Largest contribution to χ^2 from $A_{\rm FB}^{0,{\rm b}}$ (2.4 σ)
- $A^{0,b}_{FR}$ prefers large m_{H} , whereas R_{ℓ} , $m_{\rm W}$ and lepton asymmetries prefer small $m_{\rm H}$

3

0

1

Standard Model Fit

Good agreement between measured $m_{\rm W}$, $m_{\rm t}$ and values predicted by fit excluding direct measurements

Pat Ward

QCD and Two-photon Physics

Will discuss:

- $\alpha_{\rm s}$ from event shapes
- $\alpha_{\rm s}$ from 4-jet rate
- Unbiased gluon jets
- Coherence effects in $Z \rightarrow 3$ jets
- Dead cone effect
- Inclusive jet/hadron production in two-photon events

No time to cover

- Fragmentation functions and scaling violation
- Fermi-Dirac and Bose-Einstein correlations in Z decays
- b-quark mass effects
- Production of Ξ_c^0 , Ξ_b in Z decays
- Pentaquark searches

$lpha_{ m s}$ from Event Shapes

- Event shapes sensitive to gluon emission, e.g. thrust: $T = \max_{\vec{n}} \left(\frac{\sum_i |p_i \cdot \vec{n}|}{\sum_i |p_i|} \right)$
- Fit event shape distributions with $\mathcal{O}(\alpha_s^2)$ + NLLA (log R matching) QCD predictions $\Rightarrow \alpha_s$
- Final measurements from all experiments

$lpha_{ m s}$ from Event Shapes

0.110

- Combinations by LEPQCD group
- Use variables which are infra-red safe (soft gluon emission) and collinear stable (collinear parton branchings)
- Combination requires care because of large correlated errors
- Treat hadronization and theory errors as uncorrelated when calculating weights, but include 100% correlation when calculating hadronisation and theory uncertainties on combined $\alpha_{\rm s}$

$lpha_{ m s}$ from Event Shapes

 $\alpha_{
m s}(m_{
m Z})$ = 0.1202 \pm 0.0003(stat) \pm 0.0007(exp) \pm 0.0015(hadr) \pm 0.0044(theo)

$lpha_{ m s}$ from 4-jet Rate

- New meas. of $lpha_{
 m s}$ from 4-jet rate
- DELPHI: Cambridge jet algorithm
- Fit to $\mathcal{O}(\alpha_s^3)$ QCD prediction of DE-BRECEN (Nagy, Trocsanyi) using experimentally optimized renormalization scale
- OPAL: Durham jet finder
- Fit to $\mathcal{O}(\alpha_{\mathrm{s}}^3)$ + NLLA QCD prediction with x_{μ} =1

Pat Ward

$lpha_{ m s}$ from 4-jet Rate

Unbiased Gluon Jets with Jet Boost Algorithm

• Jet boost algorithm (Eden, Gustafson) relates gluon jets in $q\overline{q}g$ events to gg system \Rightarrow unbiased gluon jets

Unbiased Gluon Jets with Jet Boost Algorithm

- Method used by OPAL to measure gluon charged multiplicity for 5< $E_{\rm g}$ <20 GeV
- Results consistent with other measurements, and most precise for this energy range
- Theoretical fits OK
- Also measure gluon fragmentation function

Inclusive Charged Particle Distributions

Mean charged multiplicity
 Well-described by theory or MC

• Peak of $\xi = -\ln x_p$ distribution Sensitive to coherence effects

Coherence Effects in 3-jet Events

- New results from DELPHI
- Measure multiplicity in 30° cone perpendicular to event plane in 3jet events
- Compare with corresponding quantity in 2-jet events
- Direct evidence for coherence effects in soft particle production

Dead Cone Effect

- QCD predicts gluon radiation off heavy quark suppressed at small angles
- DELPHI study using 2-jet $Z \to b \overline{b} \text{ and } Z \to c \overline{c} \text{ events}$
- Remove particles associated with b- or c-quark
- Compare angular distribution of fragmentation particles in b- and c-jets
- First DIRECT observation of 'dead cone' effect

Two-photon Physics

- Active area with many new measurements ⇒ test QCD
- e.g. new DELPHI measurement of total hadronic crosssection at low Q^2 uses Very Small Angle Tagger at $\theta \sim$ 3-15 mrad
- Direct event-by-event reconstruction of $W_{\gamma\gamma}$ for doubletagged events without unfolding \Rightarrow small systematic errors

 DELPHI measurements somewhat higher than L3 and OPAL

Inclusive jet production

- L3 measurements of inclusive jet production in two-photon collisions for $|\eta| < 1$ $< W_{\gamma\gamma} > \sim 30 \text{ GeV}$
 - $<\!\!Q^2\!\!>\sim$ 0.2 GeV 2
- p_t spectrum well-represented by power law
- Data higher than NLO QCD prediction (Frixione, Bertora)

Inclusive hadron production

• L3 measurements of inclusive π^{\pm} production in two-photon collisions for $|\eta| < 1$

$$<\!\!\mathrm{W}_{\gamma\gamma}\!\!>\!\!>$$
5 GeV

- Also see excess at high p_t compared with NLO QCD calculations (Binnewies, Kniehl, Kramer)
- Similar disagreement seen in π^0

Inclusive hadron production

- New DELPHI measurement of inclusive hadron production $|\eta| <$ 1.5 $5 < W_{\gamma\gamma} <$ 203 GeV
- Good agreement with NLO QCD for $p_t < 6 \text{ GeV}$
- Some excess of data over NLO QCD at high p_t , but not at L3 level

Exclusive Particle Production

• Fit to QCD expectation $\frac{\mathrm{d}\sigma_{\mathrm{ee}}}{\mathrm{d}Q^2} \sim \frac{1}{Q^n (Q^2 + \langle W_{\gamma\gamma} \rangle^2)^2}$ gives $n = 2.4 \pm 0.3$ (2.5±0.4) for $\rho^0 \rho^0 (\rho^+ \rho^-)$ (expect n = 2)

Summary

- Since LEP finished running in 2000, the experiments have continued to produce lots of new physics results covering a wide range of topics:
 Fermion- and boson-pair cross-sections, gauge boson couplings, QCD, two-photon physics....
- Some important LEP2 measurements still to be finalized, especially $m_{
 m W}$
- Important to utilize fully the plentiful, high-quality data produced at LEP