Beyond the Standard Model Neutral Higgs Searches at LEP Daniel Zer-Zion University of California Riverside On Behalf of the LEP Experiments

LEP-Higgs-WG

Outlook

- hZZ Coupling limits
- Two Higgs Doublet Models
- Fermiophobic Higgs
- CP-conserving MSSM
- CP-violating MSSM
- Anomalous Couplings

ICHEP04 16-22 August 2004 Beijing China

Standard Model-Like searches (95 % CL)

- a) m_H should be larger than 114.4 GeV
- b) non-SM couplings with b- and taudecays in the final state strongly bounded

ICHEP04 Contribution: LEP Higgs Working Group (12-0122)

Flavour independent searches

Assuming BR(h->hadrons) = 100 % the mass of a Higgs boson produced with SM cross-section is bounded to be larger than 112.9 GeV

ICHEP04 Contributions: DELPHI (12-0732) L3 (12-0198), OPAL (12-0463) The HZZ coupling limits 95 % CL limit on

 $\xi^2 = (g_{\rm HZZ}/g_{\rm HZZ}^{\rm SM})^2$

 $m_{\rm H} ({\rm GeV}/c^2)$

108

observed

expected $\pm 1\sigma$ bands

±2 or bands

100 110

Flavour blind searches: Higgs boson decays to down type fermions are suppressed; **BR(H->hadrons) = 100 %**

Two Higgs Doublet Models

a) Large regions of the parameter space of 2HDM(II) excluded

b) Topological searches with specific final states

ICHEP04 Contributions: DELPHI (12-0732, 12-0736), L3 (12-0198), OPAL (12-0466)

Two Higgs Doublet Models (2HDM)

Simplest extension of SM with 2 complex scalar field doublets, in total 5 physical scalar Higgses:

- CP even scalars: h, H
- CP odd scalar: A

 $\cos(\beta - \alpha)$

- Two charged scalars: H[±]

6 Free parameters: 2 angles, 4 masses

Two production processes:

$$\label{eq:star} \begin{array}{ccc} & & & & \\ & & & \\ & & & \\ & &$$

The type of 2HDM is determined by the couplings of the Higgs doublets to fermions:

- **Type I**: quarks and leptons only couple to the 2nd Higgs doublet
- **Type II:** 1st Higgs doublet couples only to down-type fermions, 2nd Higgs doublet couples only to up-type fermions

General 2HDM(II)

 $-\pi/2 \le \alpha \le \pi/2$

MSSM-like

 $-\pi/2 \le \alpha \le 0$

hA->hadrons cross-section limits by DELPHI and OPAL

Fermiophobic models

- a) Mass limits at around 109 GeV in the benchmark fermiophobic model for the 2 photons final state
 - b) 2HDM(I) Fermiophobic excluded at large (m_h, m_A) domains
- c) H->WW* (ZZ*) fermiophobic excluded in the mass region (83.7,104.6) GeV
- ICHEP04 Contributions: DELPHI (12-0736), L3 (12 0197)

Fermiophobic Higgs searches:

Benchmark: HZ-SM production cross-section with all direct decays into fermions removed

Mass limits: A 105.4 GeV D 104.1 GeV L 105.4 GeV O 105.5 GeV

LEP fermiophobic limit: 109.7 (109.4) GeV

2HDM(I): hff $\sim \cos\alpha$ If $\alpha = \pi/2$, hff couplings vanish and h⁰ becomes fermiophobic

$$h^0 \rightarrow \gamma \gamma, A^0 \rightarrow bb$$

or $A^0 \rightarrow h^0 Z^0 \rightarrow \gamma \gamma Z^0$

 $h^0 A^0 {\rightarrow} \gamma \gamma b \overline{b}, \, h^0 A^0 {\rightarrow} \gamma \gamma \gamma \gamma \ Z^0$

Combined with

$$h^0 Z^0 {\rightarrow} \gamma \gamma Z^0$$

Fermiophobic 2HDM

Fermiophobic benchmark:

BR(H->WW*)+BR(H->ZZ*) given by HDECAY, SM cross section with fermionic decays switched off Excl. Limit 95 % CL 83.7 < m_b< 104.6 GeV

If BR(H->WW*)+BR(H->ZZ*) =1 then m_h < 108.1 GeV Excl. at 95 % CL

MSSM (LEP Combination)

a) CP- Conserving

b) CP-Violating

ICHEP04 Contributions: DELPHI (12-0144), OPAL (12-0461), LEP-Higgs-WG (12-0122)

The MSSM framework at LEP

- Interpretation in a constrained MSSM
- At tree level, 2 parameters describe the Higgs sector
- Additional parameters enter at the level of radiative corrections:

M _{susy} : Energy scale of SUSY breaking, it is a common mass for all sfermions at the EW scale M₂ : Common gaugino mass at EW scale

- μ : strength of the supersymmetric Higgs mixing
- A: a common trilinear Higgs-squark coupling $\mathcal{M}_{\tilde{g}}$: gluino mass
- X_{t} , X_{b} : stop and sbottom mixing parameters

MSSM Benchmark CPC scans

- 1) no-mixing: X_t = 0, relatively restricted MSSM parameter space
- 2) mh-max: designed to maximise the upper bound of mh for every tanβ
- 3) large-µ : detection a priori difficult

hep-ph/9912223 Carena, Heinemeyer, Wagner and Weiglein

MSSM Benchmark CPV scan (new) 4) CPX: designed to give large deviations from **CPC** scenarios $\sigma_{\mathrm{H}_i Z} = g_{\mathrm{H}_i Z Z}^2 \sigma_{\mathrm{H} Z}^{SM}$ z* h,H $\sigma_{\mathrm{H}_{i}\mathrm{H}_{j}} = g_{\mathrm{H}_{i}\mathrm{H}_{j}Z}^{2} \,\lambda \,\sigma_{\mathrm{H}Z}^{SM}$ H_1 $g_{\mathrm{H}_{i}ZZ} = \cos\beta \mathcal{O}_{1i} + \sin\beta \mathcal{O}_{2i}$

 $g_{\mathrm{H}_{i}\mathrm{H}_{j}\mathrm{Z}} = \mathcal{O}_{3i}(\cos\beta\mathcal{O}_{2j} - \sin\beta\mathcal{O}_{1j}) - \mathcal{O}_{3j}(\cos\beta\mathcal{O}_{2i} - \sin\beta\mathcal{O}_{1i})$

$$O_{ij}^2 \propto \frac{m_t^4}{v^2} \frac{\text{Im}(\mu A)}{32\pi^2 M_{\text{SUSY}}^2}$$

Carena, Ellis, Pilaftsis, Wagner Phys. Lett. B495 (2000) 155

Benchmark parameters				
	no-mixing	m _h -max	large-µ	CPX
	Paramete	ers varied in th	e scan	
tanβ	0.4-40	0.4-40	1-50	0.6-40
$m_{\rm A}$ [GeV]	4-1000	4-1000	4-400	ø
$m_{\mathrm{H}^{\pm}}$ [GeV]	820	<u>1</u> 2	828	4-1000
1	Fix	ed Parameters		
M _{SUSY} [GeV]	1000	1000	400	500
<i>M</i> ₂ [GeV]	200	200	400	200
μ [GeV]	-200	-200	1000	2000
mĝ [GeV]	800	800	200	1000
X _t [GeV]	0	$\sqrt{6}M_{SUSY}$	-300	$A - \mu \cot \beta$
A [GeV]	$X_t + \mu \cot \beta$	$X_t + \mu \cot \beta$	$X_t + \mu \cot \beta$	1000
arg A, arg mg		. 72	2000 - 10000 - 10000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 -	90°

LEP MSSM Exclusions at 95 % CL for the m_h -max benchmark scenario (m_t = 179.3 GeV)

LEP MSSM Exclusions at 95 % CL for the no-mixing benchmark scenario (m₁ = 179.3 GeV)

LEP MSSM Exclusions at 95 % CL for the large- μ benchmark scenario (m_t = 179.3 GeV)

LEP Exclusions at 95 % CL for the CPX scenario

Search for anomalous couplings by L3

Large regions excluded in the parameter space

ICHEP04 Contribution: L3 (12-0194)

Search for anomalous couplings by L3

SM Expanded via a linear SU(2) x U(1) representation to higher orders where new interactions become possible

$$\begin{split} \mathcal{L}_{\text{eff}} &= g_{\text{H}\gamma\gamma} \text{ HA}_{\mu\nu} \text{A}^{\mu\nu} + g_{\text{HZ}\gamma}^{(1)} \text{ A}_{\mu\nu} Z^{\mu} \partial^{\nu} \text{H} + g_{\text{HZ}\gamma}^{(2)} \text{ HA}_{\mu\nu} Z^{\mu\nu} \\ &+ g_{\text{HZZ}}^{(1)} Z_{\mu\nu} Z^{\mu} \partial^{\nu} \text{H} + g_{\text{HZZ}}^{(2)} \text{ HZ}_{\mu\nu} Z^{\mu\nu} + g_{\text{HZZ}}^{(3)} \text{ HZ}_{\mu} Z^{\mu} \\ &+ g_{\text{HWW}}^{(1)} (\text{W}_{\mu\nu}^{+} \text{W}_{-}^{\mu} \partial^{\nu} \text{H} + h.c.) + g_{\text{HWW}}^{(2)} \text{ HW}_{\mu\nu}^{+} \text{W}_{-}^{\mu\nu}, \end{split}$$

Limits on a global rescaling factor of all Higgs couplings

Summary

SM-Like searches (95 % CL):

m _H should be larger than 114.4 GeV
non-SM couplings with b- and tau-decays in the final state strongly bounded

Flavour independent searches:

- Assuming BR(h->hadrons) = 100 % the mass of a Higgs boson produced with SM crosssection is bounded to be larger than 112.9 GeV

2HDM(II):

- Large regions of the parameter space excluded
- Topological searches exclude hA->hadrons, hA->4b, hA->4tau, hA->(AA)A->6b, 4b+Z in large (m_h, m_A) domains

Fermiophobic models:

- Mass limits at 109 GeV in the benchmark model with 2 photons in the final state
- 2HDM(I) Fermiophobic excluded at large (m_h, m_A) domains
- H->WW* (ZZ*) fermiophobic excluded in the mass region (83.7,104.6) GeV

MSSM:

- CP-Conserving and CP-Violating scans over benchmark scenarios exclude large regions of the parameter space of the models considered

Anomalous couplings:

- large regions excluded in the parameter space