QCD and Hadronic interactions

Recontres de Moriond-La Thuille 12-19 March 2005

Searches for Higgs in the MSSM CP-conserving and CP-violating scenarios at LEP

P.Ferrari (CERN)

on behalf of the LEP experiments

-model introduction -the CP-conserving MSSM -the CP-violating MSSM -2HDM

2 Higgs Doublet Models

- Simplest extension of SM are 2HDMs
 - $\boldsymbol{\rho} = \frac{\mathbf{m}_{\mathbf{W}}^2}{\mathbf{m}_{\mathbf{Z}}^2 \mathbf{cos}^2 \boldsymbol{\Theta}_{\mathbf{w}}} ~ \boldsymbol{\sim} ~ 1 \text{ and no FCNC}$
- Two complex scalar field doublets Φ_1 and Φ_2 , 5 scalar Higgses:
 - Real parts mix with α -> CP even scalars h^0, H^0
 - Imaginary part -> CP odd scalar A^o
 - Two charged scalars H+-
- Two production processes :
 - $\sigma_{hz} = \sin^2(\beta \alpha)\sigma^{SM}_{Hz}$
 - $\sigma_{HZ} = \cos^2(\beta \alpha) \sigma^{SM}_{HZ}$
 - σ_{HA}=cos²(β-α)λσSM_{HZ}
 - β =ratio of VEV of scalar fields

- The type of 2HDM determined by the couplings of Φ_1 , Φ_2 to fermions:
 - Only Φ_1 couples to fermions 2HDM (I)
 - Φ_1 (Φ_2) couples to down (up) type fermions 2HDM(II)

Pamela Ferrari

The MSSM

2HDM(II) are interesting since by adding supesymmetry

CP-conserving MSSM is interesting since it provides framework for unification of Gauge interactions and stability of universe at EW scale

m_h <140 GeV after radiative corrections

to explain matter-antimatter asymmetry in universe we need
CP-violation >> than in SM

Justifies introduction of CP-violation in MSSM: can be done via radiative corrections (in particular from 3rd generation s-quarks)

Pamela Ferrari

CP-violation in MSSM

<u>Mass eigenstates and CP-eigenstates do not coincide:</u> H_1, H_2, H_3 are mixtures of CP-even and CP-odd Higgs fields

Experimental searches

b-tagging HZ

- $(H \rightarrow bb) (Z \rightarrow qq)$
- $(H \rightarrow bb, \tau\tau) (Z \rightarrow vv)$
- (H→ bb,qq) (Z→ ee, $\mu\mu$)
- ($H \rightarrow \tau \tau$) ($Z \rightarrow qq$), ($H \rightarrow bb, \tau \tau$) ($Z \rightarrow \tau \tau$)

Flavour independent HZ

- (H→ qq) Z
- $(H_2 \rightarrow H_1 H_1)$ Z dominant when kinematically allowed

b-tagging pair production H_2H_1

- $(H_2 \rightarrow bb) (H_1 \rightarrow bb)$
- $(H_2 \rightarrow \tau \tau) (H_1 \rightarrow bb)$
- $(H_2 \rightarrow H_1 H_1 \rightarrow bbbb)((H_1 \rightarrow bb))$

<u>Flavour independent</u> H_2H_1 used only for 2HDM(II) scan

• $(H_2 \rightarrow qq) (H_1 \rightarrow qq)$

Additional constraints

• Z width, decay mode independent search for HZ, light Higgs from Yukawa production

data @ 91 GeV<√s< 209 GeV Interpreted in MSSM CPC and CPV and 2HDM(II)

ALEPH, DELPHI, OPAL & L3

MSSM CPC benchmarks

Traditional scans:

- No mixing: in stop sector
- m_h max: yields maximal bound on m_hTH
- Large μ : suppressed h-> bb

7 parameters: (Carena et al. hep-ph/9912223) m_{top} = 179.3 GeV (178.0±4.3 GeV CDF & DO) M_{SUSY} sfermion mass at EW scale μ Higgs mixing parameter M_2 gaugino mass at EW scale m_g gluino mass X_t = Stop mixing parameter A_b = A_t = Xt + μ cot β =trilinear Higgs-squark coupling

New scans: envisaged for final LEP combination but not yet done

- Favoured by $(g-2)_{\mu}$ and $Br(b->s\gamma)$
 - No mixing (2TeV) reversed μ sign motivated by (g-2) $_{\mu}$
 - $\textbf{m}_{\textbf{h}}\text{-}\textbf{max+}$ with reversed μ sign motivated by (g-2)_{\mu}
 - constrained m_h -max reversed sign for A_t and X_t motivated by Br(b->s γ)

Regions where Hadron colliders might have problems in detecting the Higgs

- gluophobic gg->h suppressed
- small α_{eff} h->bb,tt suppressed

CPC m_h-max scan

No-mixing & large μ scans

Pamela Ferrari

Recontres de Moriond '05

Did we miss the Higgs?

No excess larger than 3 σ:

 $\label{eq:started_linear_started_l$

Recent interpretations:

M.Drees hep-ph/0502075 G.L. Kane et al. hep-ph/0407001

Explain this kind of "excess" within

- CP-conserving MSSM
- CP-violating MSSM
- 2HDM

Example of new scans

OPAL Eur. Phys. J. C37: 49-78, 2004

Only OPAL data: exclusion will be larger for LEP combination

Large regions of the parameters space are excluded

Pamela Ferrari

CP-violating MSSM

Phases of A_t , A_b and $m_{\tilde{g}}$ introduce CP violation in the Higgs potential via loop effects leading off-diagonal contributions to higgs mass matrix

Theoretically: $argA_u \neq 0$ most general case, can be motivated by Baryogenesis.

Size of CP violating effects proportional to:

$$M_{SP}^2 \propto \frac{m_t^4}{v^2} \frac{\text{Im}(\mu A_t)}{32\pi^2 m_{SUSY}^2}$$

- benchmark: large $argA_u \neq 0$, large μ , relatively small m_{SUSY}
- the CP violation increases with m_t

Pamela Ferrari

CPX benchmark

Carena et al., Phys.Lett B495 155(2000)

tanβ	m _H +(GeV)	μ (GeV)	m _{susy} (GeV)	M ₂ (GeV)	A _q (TeV)	arg(A _q)	m _g (TeV)	arg(m _g)
0.6-40	4-1000	2000	500	200	1	90 °	1	90 °
						1		

EDM measurements of n and e fullfilled

Feynhiggs and CPH are a priori equivalent:

Feynhiggs has more advanced one-loop corrections
 CPH (CPV version of SUBHPOLE) is more precise at the two-loop level

In each parameter space point the most conservative result is used

All implemented in HZHA with ISR and interference between identical final states from Higgstrahlung and boson fusion process

CPX scan

12

OPAL general 2HDM(II) scan

2HDM(II) have no constraint derived from SUSY:

h → bb is not dominant decay, e.g for α=0 BR(h→bb/ττ)=0 ⇒ flavour-indep. searches
 large regions of the parameter space cannot be exlcuded by LEP

light Higgs not ruled out

Signal generated with HZHA

Free parameters: 1 < m_h < 130 GeV **3** GeV < m_A < 2 TeV **a** = ± $\pi/2$, ± $\pi/4$,0 **b** 0.4 < tan β < 40

 $m_{\!H}$ and $m_{\!H}\!\pm$ kinematically unaccessible

Excluded rectangular region for $1 < m_h < 55$ GeV when $3 < m_A < 63$ GeV But for $m_A > 63$ values of m_h down to 0 are still allowed !

No tan β exclusion independent of m_h/m_A

Pamela Ferrari

Conclusions

At LEP we have searched for Higgses in several extensions of SM:
 CP-conserving MSSM
 CP-violating MSSM
 2HDM

No evidence of the presence of a signal has been found

Still there is room for the presence of a light Higgs: In CP-violating MSSM In 2HDMs

Some theoretical papers interpreting small data-background discrepancy (about 2 σ) in the context of specific CPC MSSM scenarios (require quite some tuning) as well as CPV MSSM and 2HMD.

Back-up

SM vs MSSM excess

 $1\text{-}CL_{\rm b}$ gioves the Probability of a local fluctuation of background. Probability that a fluctuation appears anywhere within a certain mass range is given by:

$$(1-CL_b) \times \frac{\Delta \text{ (mass range)}}{\text{mass resolution}}$$

m_h max scans

m_t=174.3,179,183 GeV

No-mixing

Useful searches for CPV MSSM

CPH vs FEYNHIGGS

- The largest discrepancy occurs for large tanβ where Feynhiggs predicts a higher x-section for Higgstrahlung
- Data/background discrepancy in intermediate tanβ region:
 due to excess at m_h~98 GeV which is the m_{H2} mass in this region

CPX-phases

Exclusion decreases With increasing argA_{t,b} (CP-Violation)

Pamela Ferrari

2HDM scan

23

2HDM scan tan β exclusion

OPAL

No tan β exclusion independent from m_h and m_{A}

Pamela Ferrari

The statistical method: "likelihood ratio"

- Data are subject to likelihood test ratio of 2 hypothesis
 - Data receive contributions from background processes only
 - Data receive contribution from background+SM Higgs boson signal of test mass m_H
- Channels are binned in 2-dimensional space $({{
 m m_H}^{
 m rec}},{\mathcal G})$

signal