

Yoram Rozen - Technion, Israel for the OPAL Collab.

Rb-Theoretical prediction

LEP2 cross sections

<u>LEP Fermion Pair Production None</u> Radiative Cross Section

4. Tagging efficiency $\rightarrow \epsilon_b$

Radiation of an initial state photon decreases effective collision energy to $\sqrt{s'}$

If \sqrt{s} close to Z peak \Rightarrow more likely to interact \Rightarrow enhancement of CS

<u>Reject events with 'other' topologies:</u>

- Four jets
- No missing momentum

ww \rightarrow qqlv (43%)

- Two jets.
- Isolated lepton
- Missing momentum

γ,z w

ww \rightarrow lvlv (11%) [ee, $\mu\mu$, $\tau\tau$,e μ , e τ , $\mu\tau$]

- Two leptons
- Missing energy

B tagging

- Each event is divided to hemispheres
- The lb algorithm is applied to each hemisphere
- Each event is given a b-being likelihood L:

$$L_{event} = \frac{r_b L_{b1} L_{b2}}{r_b L_{b1} L_{b2} + r_c L_{c1} L_{c2} + r_{uds} L_{u1} L_{u2}}$$

Efficiency

С

g_{bb}

Systematics (207 GeV)

Source	$\Delta R_{b}/R_{b}$
Track reconstruction	3.2%
MC stat	0.6 %
5'	0.1 %
Lepton ID	0.5%
Total detector effects	3.3%

Source	$\Delta R_b / R_b$
b,c physics modelling	1.3%
K^0 , Λ rate	0.2 %
Interference	0.3 %
gcc	0.1%
gbb	0.1%
4f background	0.1%
Total physics modelling	1.3%

Total systematic uncertainty = 3.5%

<u>Results</u>

Conclusion

>Rb was measured by OPAL at 8 new energy points (183-207 GeV)

Using a highly efficient and background-free B-tagger.

> These measurements are consistent with the SM prediction:

 $\frac{R_b^{OPAL}}{R_b^{SM}} = 1.055 \pm 0.031 \pm 0.037$

Thanks

> To the organizers for the great snow/food/program

> To my daughter for sitting so quietly

> To Hagar Landsman for all the help throughout