Searches for New Particles

HEP2003 Europhysics Conference in Aachen, Germany 17 – 23 July 2003

This Talk ...

- Concentrates on results from recent data and expected sensitivities ...
 - Direct searches for particles in/beyond the SM
 - Many having gone from `preliminary' to `published'
 - Indirect constraints on physics beyond the SM
 - See Pippa Wells' talk for precision measurements in SM
- Will NOT devote (much) time to future prospects, since covered in other talks
 - LHC : S.Arcelli, E.Ros, M.Sanders
 - LHC LC working group : G.Weiglein
 - LC studies : S.Hesselbach
- Impossible (of course) to cover everything
 - 183 relevant abstracts submitted to EPS03 alone!
 - $\checkmark \Rightarrow$ Selected topics and recent results

Collider Experiments Dominant

e⁺e⁻ collider
√s = 91-209 GeV
∫⊥ ~ 900 pb⁻¹/expt
ALEPH, DELPHI, L3, OPAL

last data in 2000analyses converging

- pp collider
 √s = 1.8-2 TeV
 ∫⊥ ~170-200 pb⁻¹/expt
 CDF, DØ
- 2009: ∫⊥ ~ 4.4-8.6 fb⁻¹/expt

- e[∓]p collider
 √s = 300-320 GeV
 ∫⊥ ~ 130 pb⁻¹/expt
 H1, ZEUS
- Iast data in 2000
- 2006:
 ∫⊥ ~ 1 fb⁻¹/expt

\ldots and the LHC is coming \ldots

Outline

|O^{meas}-O^{fit}|/σ^{meas} Measurement Fit Sec. (m.) 0.02761 ± 0.00036 0.02767 m₂ [GeV] 91.1875 ± 0.0021 91.1875 Γ., [GeV] 2.4952 ± 0.0023 2.4960 σ_{had}^0 [nb] 41.540 ± 0.037 41,478 20.767 ± 0.025 20.742 0.01714 ± 0.00095 0.01636 A.(P.) 0.1465 ± 0.0032 0.1477 Rb 0.21638 ± 0.00066 0.21579 R_c A_{fb} A_{fb} 0.1720 ± 0.0030 0.1723 0.0997 ± 0.0016 0.1036 0.0706 ± 0.0035 0.0740 A_n 0.925 ± 0.020 0.935 0.668 0.670 ± 0.026 A_c A(SLD) 0.1513 ± 0.0021 0.1477 sin²0^{lopt}(Q_n) 0.2324 ± 0.0012 0.2314 80.426 ± 0.034 80.385 mw [GeV] 2.093 Γ_w [GeV] 2.139 ± 0.069 174.3 m, [GeV] 174.3 ± 5.1 sin²0...(vN) 0.2277 ± 0.0016 0.2229 -72.84 ± 0.46 -72.90 0 2

Standard Model healthier

than ever ... BUT ...

Summer 2003

2

- Structure, generations, ...
 - excited fermions
 - Ieptoquarks
 - anomalous single top, rare decays
- Scales, hierarchy
 - large extra space dimensions
 - Super-Symmetry (RP-Violation)
- Higgs bosons
 - in Standard Model
 - in MSSM / 2HDM
 - → exotic Higgs, FCNC b → s]*1-
 - little Higgs

Excited Fermions (f*→ fV, q*→ qg) → E.Sánchəz

SM observation:

- 3 distinct fermion generations
- hierarchy of their masses
- similarity in electric charge and weak properties
- ⇒ could be compositeness / substructure ("preons")
- \Rightarrow consequence: excited states with m(f*) \ge 100 GeV

<u>Phenomenology</u> (Hagiwara et al.):

- f, f', (f) relative coupling strength to $SU(2)_1$, $U(1)_2$, (and $SU(3)_2$)
- Λ compositeness mass scale
- **Xsec** depends on m_{f^*} and f/Λ

	Ι *, ν*	W, Ζ, γ	HERA, LEP
many f* searches	q*	W, Ζ, γ , g	HERA, LEP, TEVATRON

1st Example ($e^* \rightarrow eV, v^* \rightarrow vV$)

2^{nd} Example (q* \rightarrow qV, q* \rightarrow qg)

from di-jet mass spectrum for f=f'=f_s=1and ∆=M_{q*}: M_{q*} > 760 GeV (CDF,II) 775 GeV (DØ,I) 940 GeV 2 fb⁻¹

... quark substructure regime of hadron colliders ...

3rd Example: Leptoquarks

A.Zamecki

Motivation:Observed symmetry between lepton and quark sectorSolution:Leptoquarks (LQ), proposed by several theories
coloured spin 0,1 bosons with baryon and lepton number

High p₁-Leptons at HERA

J.Ferrando

Interpretation:

FCNC single top production, at LEP (~ 10^{-9} fb), HERA in SM small

- anomalous contribution in SUSY, exotic quarks, multi-Higgs doublets, ...
- topology at HERA: high p, positron / muon + large missing E,

Anomalous Single-Top Production ZEUS

Search for Extra Space Dimensions

Search for Extra Space Dimensions

Di-electron/photon channel

actually use mass vs cos θ^{\ast}

```
SM Prediction DØ Run-II preliminary
```


• In Randall-Sundrum model only one compact ED • Warps space-time by $e^{-2kr}c^{\pi} \Rightarrow$ coupling k/M_{μ}

	CDF-I (110 pb ⁻¹)	di-EM (e, γ)	M _s > 0.85 – 0.94 TeV							
	CDF-I (87 pb ⁻¹)	Mono-Jet/γ+MET	M _s > 1.0 (0.6-0.7) TeV for n=2 (n=6)							
	CDF-II (75 pb ⁻¹)	di-e, μ,γ,Jet	k/M _{PI} limits in RS							
	DØ-I (127 pb ⁻¹)	di-EM (e, γ)	M _s > 1.2 TeV							
	DØ-I (78.8 pb ⁻¹)	Mono-Jet +MET	M _D > 1.0 (0.65) TeV for n=2 (n=6)							
1	DØ-II (120 pb ⁻¹)	di-EM (e, γ)	M _s > 1.28 TeV							
6 * 0g	DØ-II (30 pb ⁻¹)	di-µ	M _s > 0.79 TeV							
$^{\circ}$ interpretation in several different models										

Search for Branons and Radions

- Branons $\hat{\pi}$ → brane fluctuations (in ADD)
 Gravitation scale M_F and brane tension scale f
- ${\scriptstyle \bullet}$ Gravitons for f $\gg M_{_{\rm F}}$ and branons for f $\ll M_{_{\rm F}}$

L3 Limits on the Brane Tension

$$\Rightarrow e^+ e^- \rightarrow \hat{\pi} \hat{\pi} (\gamma / Z^0)$$

- Spinless local fluctuations in RS model: radions
- Mixes with Higgs, couples directly to gluons

Recycle model- and flavour-indep. Higgs search

Super-Symmetry Models

P.Azzurri, M.Wegner, I.Trigger, C.Rott, S.Hesselbach, T.Nunnemann, C.Schwanenberger

Stop/Sbottom Searches

• similarly 160 GeV stop-mass reach for $qq \rightarrow t^+t^- \rightarrow c\chi_1^0 c\chi_1^0$ • Run-II analyses ongoing ...

Chargino and Neutralino Limits

assumes SUSY-GUT (SU(5), SO(10)) relation : $M_1 = 5/3 \tan^2 \theta_w M_2$

drop GUT relations (unification via string theory) \Rightarrow no collider bounds on $m_{\widetilde{\chi_1^0}}$

 $m_{\widetilde{x^0}} > 5 \, GeV \, / \, c^2$ $m_{\widetilde{\chi_1^0}} > 100 \, MeV \, / \, c^2$ if LSP is lightest neutralino from SN1987A responsible for observed CDM relic density respect LEP2 limits on charginos, sleptons, sneutrinos D.Hooper, T.Plehn (hep-ph/0212226), Bottino et al. (PRD 67,063519 (2003)) H.Dreiner et al. (hep-ph/0304289) EPS'03, 21,7,2003 Arnulf Quadt – Searches for New Particles -

$Z \rightarrow \tau \tau$ Signal at the Tevatron

- improved τ -finding in Run-II
- search for $\tau \rightarrow e_{VV}$ and $\tau \rightarrow hadrons$
- also $\tau \rightarrow \mu \nu \nu$ being analysed ...
- finding $Z \rightarrow \tau \tau$ is milestone in SUSY and Higgs searches ...

Search for SM Higgs-Boson at LEP

SM Higgs Searches at LEP (cont'd)

SM Higgs Search – Status Quo

P.Wells

Tevatron Luminosity and Prospects

EPS'03, 21.7.2003 Arnulf Quadt – Searches for New Particles -

Page 22

SM Higgs Search at the Tevatron

Improved Undersignating due to Data

Process	SHW 1999	Xsec '03	Ratio	Analysis '03	Ratio	comment
HZ (115 GeV)	3.15	3.82	1.22	2.86	0.91	
HW (115 GeV)	2.39	2.78	1.16	2.08	0.87	
Zbb	4.34	1.73	0.4	1.99	0.46	from CDF data
Wbb	9.45	3.59	0.38	4.34	0.46	from CDF data
ZZ	1.82	2.36	1.3	2.93	1.61	PYTHIA 6.125 + K=1.34
WZ	1.45	1.79	1.45	1.84	1.27	PYTHIA 6.125 + K=1.34
#	3	6.53	2.18	5.48	1.83	average of NLO calc.
qtb	0.31	0.8	2.62	0.68	2.22	NLO calc.
tb	4.7	0.49	0.1	0.35	0.08	NLO calc
QCD	25.06	17.3	0.69	11.16	0.45	from current study
total bgd	50.11	34.59		28.77	\mathbf{D}	
Significance	0.78	1.12		0.92		

nr. events for 1 fb⁻¹

- assumes mostly running with Run-IIB silicon tracker
- assumes Jet-Mass resolution of 10%,
 - SHW 1999 CAL reso. assumption met in Run-IIA
- improvement mainly from sophisticated analysis techniques
- ~50% less luminosity needed compared to 1999 with updated Xsec
- ~28% less luminosity needed with realistic trigger efficiency,

QCD ... Bgd from data compared to SHW '99

SM Higgs Search at the Tevatron

Higgs Searches at the LHC

> S.Arcelli

2-Higgs Doublet Models

Two Higgs Doublets 2 CP-even neutral Higgses 1 CP-odd neutral Higgs	${egin{array}{c} {\mathcal H}_1, {\mathcal H}_2 \ { m and} \ { m 5}} \ { m h}^0, { m H}^0 \ { m A}^0 \ { m H}^+ \end{array}$	$\begin{array}{l} \textbf{physical states} \\ \mathbf{m_h} < \mathbf{m_H} \end{array}$	$\mathcal{H}_1 = \Phi_1 = egin{pmatrix} \phi_1^+ \ \phi_1^0 \end{pmatrix}; \mathcal{H}_2 = \phi_2 = egin{pmatrix} \phi_2^+ \ \phi_2^0 \end{pmatrix}$					
2 charged Higgses Free parameters:	$ aneta=v_2/v_1$	(VEV ratio)	couples to	type I	type II	type III	type IV	
	α μ	(mixing angle of h, H) Higgs mass parameter	'd-type' leptons	Φ_2	Φ_1	Φ_2	Φ_1	
	A_0	common trilinear Higgs-sfermion coupling	ʻu-type' quarks	Φ_2	Φ_2	Φ_2	Φ_2	
tree level: rad.corrected:	$\mathrm{m_h} < \mathrm{m_Z} < \mathrm{m_H} \ \mathrm{m_b} < 130$ GeV		ʻd-type' quarks	Φ_2	Φ_1	Φ_1	Φ_2	
e ⁺ Z [*]	$Z^{*} \xrightarrow{Z} e^{+} \xrightarrow{Z^{*}} A_{h}$ for example: MSSM					mple:		
"Higgsstrahlung" $\sigma_{hZ} = \sin^2(meta-lpha) o$	"Associated $\sigma_{hA}=\cos$	Production" ${ m s}^2(eta-lpha)ar\lambda\sigma^{SM}_{ uar u}$	g _{hff} ∝cos α ⇒ fermiophobic for α=π/2 i.e. might couple only to bosons, not to fermions					

CP-Conserving MSSM Higgs Search

CP-Conserving MSSM Higgs Search

CP-Violating MSSM Higgs Search

 CP violation in Higgs sector: ⇒ A, h, H not eigenstates ⇒ new eigenstates H₁, H₂, H₃

 Arg A_u ≠ 0 motivated by baryogenesis

 benchmark with large μ, Arg A_u, small M_{susy}
 mixing and coupling suppression

... search for H_1 and H_2 in H_1Z and H_1H_1 ...

Charged Higgs Bosons H[±]

Charged Higgs Bosons H[±](cont'd)

In 2HDM (type I):

Fermiophobic Higgs Searches

D.Baden

- In 2HDM type I Higgs coupling to fermions $g_{_{\text{Hff}}} \sim \cos \alpha$ can go to zero
- (\rightarrow) fermiophobic Higgs') ■ Increase of bosonic Higgs decays (in SM Br(H $\rightarrow \gamma\gamma$) ≈ 0.1% for m_h=90 GeV)

Doubly Charged Higgs Bosons H^{±±}

J.Cuevcis

...search for same-sign multi-lepton events ...at LEP, HERA, TEVATRON ...

Single H^{±±}Production at HERA

recent excitement (2002) from high mass multi-electron events in H1

Doubly Charged Higgs Bosons H^{±+}

Conclusions

- Expect physics beyond the Standard Model ...
 - we are groping in the dark where will we find it ?
- Fundamental scale / structure
 - EW \leftrightarrow TeV \leftrightarrow M_{pl}
- Experiments:
 - model-independent searches
 - searches within numerous models
 - rare decay measurements
 - precision EW measurements
 - a lot more sensitivity in our hand (HERA-II, Tevatron-II, LHC ...)
 - ..
- New physics at/from TeV scale
 - due to EW-symmetry breaking / Higgs sector (Tevatron, LHC, linear collider)

... next 5 to 10 years will tell ...

Acknowledgements

- Many contributors both directly and indirectly to this talk, including
 - New results and plots
 - New combinations
 - Suggestions about what to show
 - Suggestions about what NOT to show
- All mistakes and inconsistencies are mine!
- In particular, thanks to (not a complete list):

F.Bedeschi, G.Broijmanns, D.Dannheim, *Herbi Dreiner*, E.Gallo, J.Hobbs, G.Landsberg, H.Logan, C.Mariotti, S.Mele, P.Newman, T.Nunnemann, C.Rembser, A.Schöning, R.Tenchini, M.Wegner, T.Wengler, A.Zarnecki

... and many more ...

Decaymode- and Flavour-Independent Higgs M.Boonekamp

'Little' Higgs

→ H.Logcin, E.Ros

Leptoquark Searches at the Tevatron-II

1st gen.

EPS'03, 21.7.2003 Arnulf Quadt – Searches for New Particles -

2nd gen.

Limits on RP-Violating GMSB C.Schwanenberger

