W mass and W⁺W⁻ final state interactions

Nigel Watson University of Birmingham

<u>Outline</u>

1

 \Rightarrow systematics

- Colour Reconnection
- Bose-Einstein Correlations
- Combined LEP Results
- Summary

W⁺W⁻ final states

BR=45%

- $\sim 87\%$ efficiency
- ~ 20% impurity, mostly $Z \rightarrow qqgg$
- 4 jets, fully observed
 - $\textcircled{\sc op}$ jet-jet $\Leftrightarrow W$ ambiguity
 - **8** Final State Interactions

- BR=44%
- ~ 85% efficiency
- $\sim 10\%$ impurity, mostly non-WW 4-f
- 2 jets, 1 charged lepton, \geq 1 v

BR=11%

- ~ 80% efficiency
- $\sim 10\%$ impurity, mostly non-WW 4-f

 ${\it e}$ 2 charged leptons, \geq 2 v

minimal impact on M_W.

ADLO combined, ~ 2 300 pb⁻¹ data for M_W measurement \Rightarrow 30 000 W^+W^-

82% all LEP2 sample analysed (100% Aleph, L3)

Systematic Effects

Important! > combined statistical error = 26 MeV

Errors either uncorrelated, or correlated:

-between expts. and channels

-between expts. in single channel

	Uncertainty on \mathbf{M}_{W} (MeV)		
Source	qqlv	qqqq	Combined
ISR/FSR	8	8	7
Hadronisation	19	17	18
Detector	11	8	10
Beam energy	17	17	17
Colour	-	40	11
Reconnection			
Bose-Einstein	-	25	7
Other	4	5	3
Total systematic	29	54	30
Statistical	33	31	26
Total	44	63	40

• BEC/CR uncertainty \Rightarrow qqqq net weight = 0.27

5

• With equal systematics, statistical uncertainty = 22 MeV

ISR/FSR

- Compare ISR models, e.g. in KORALW/EXCALIBUR
- Reweight KORALW (LLA) $O(\alpha^3) \rightarrow O(\alpha^2), O(\alpha^1)$

-incomplete at $O(\alpha)$, no ISR \leftrightarrow FSR, W+ γ

 \Rightarrow Full $O(\alpha)$, DPA of RACOONWW (unweighted)

Hadronisation

- Compare various models and parameter variation
- Reweight relevant variables MC/data, propagate \rightarrow M_W
- Mixed Lorentz Boosted Z⁰ (MLBZ) (D)

- Resonant depolarisation, NMR probes/flux loop
- LEP Spectrometer

Final State Interactions

- Colour Reconnection (QCD vacuum properties)
- Bose-Einstein Correl^{n.} (coherent particle production)

Colour Reconnection

Two colour singlets, may not hadronise independently W^+W^- decay vertices ~ 0.1 fm hadronic scale ~ 1 fm

Perturbative CR suppressed ~ $(\alpha_s/\pi)^2 \Gamma_W/N_c^2$

Non- perturbative CR, implemented in hadronisation models

 More reconnection (+background!) when hadronisation regions overlap

spacetime picture of shower development important

"Observable" Effects

- Inclusive multiplicity, $ln(1/x_p)$, soft or heavy particles
- Particle distribution relative to 4-jet topology
- Aim to control/calibrate systematic on M_W

Analysis Method

• Compare qqqq data with:

models, no-CR and CR MLBZ or qqlv data

Inclusive Analyses

CR effects expected larger for soft particles, $p < \Gamma_W$ Look at observables with implicit scale, e.g. $\ln(1/x_p)$, p_T , y $\ln(1/x_p)$

Data consistent with CR and non-CR models

Charged Particle Multiplicity

Compilation of (mostly) preliminary results

Define $\Delta \langle n \rangle = \langle n^{4q} \rangle - 2 \langle n^{qql_{\nu}} \rangle$

All errors are stat.⊕syst.

Expt.		$\langle n^{4q} \rangle$	$\langle n^{ m qql_{v}} angle$	$\Delta \langle n \rangle$
ALEPH	*183–202	35.75±0.54	17.41±0.19	$+0.98\pm0.43^{\#}$
GeV				
DELPH	183 GeV	38.11±0.72	19.78±0.65	See below
	189 GeV	39.12±0.49	19.49±0.41	See below
L3	183–202 GeV	37.90±0.43	19.09±0.24	-0.29 ± 0.40
OPAL	183 GeV	39.4±0.8	19.3±0.4	+0.7±1.0
	189 GeV	38.31±0.44	19.23±0.27	-0.15±0.58

* Not corrected for selection, # is $\Delta \langle n \rangle$ (data) - $\Delta \langle n \rangle$ (MC)

DELPHI measure

[Eur.Phys.J.C18(2000)203]

 $\langle n^{4q} \rangle / 2 \langle n^{qqlv} \rangle = 0.981 \pm 0.027 \quad 0.1 \le p \le 1 \text{ GeV}$

All models except ARIADNE 3, VNI consistent with data Similarly for particle dispersion

Systematic > statistical uncertaainty ⇒ combination requires proper treatment of correlations

"Heavy hadrons", numerically larger effects, less sensitive

Nigel Watson / Univ. of Birmingham

multiplicity flow

energy flow, p<1 GeV

Model study without detector simulation

OPAL repeat of L3 analysis, best agreement with no-CR...

Bose-Einstein Correlations

Enhanced production of identical boson pairs $(\pi^+\pi^+ \text{ or } \pi^-\pi^-)$ at small 4-momentum difference, $Q^2 = -(p_1 - p_2)^2$

Firmly established phenomena, LEP1 and intra-W Traditionally studied using 2-particle correlation function:

 $R(p_1, p_2) = \rho_2(p_1, p_2) / \rho_0(p_1, p_2)$

Problem 1

Reference ρ_0 should be identical to ρ , but without BEC, so:

- Unlike-sign data, / ratio of same in MC (resonances)

- Like-sign MC without BEC (MC modelling)

-Event mixing Many ways to study effect, all experiments differ! Essential question: do BEC exist between W⁺ and W⁻ ?? Problem 2

non-pQCD amplitudes unknown, resort to models

phenomenological parametrisation $R(Q) \sim 1 + \lambda exp(-r^2Q^2)$

BE strength

OPAL Analysis

ALEPH Analyses

R(Q) ~ ratio (like-sign/unlike-sign) | (data)/(no-BEC MC) Include $Z/\gamma \rightarrow$ qq background with BE₃ BE₃ model tuned with high statistics 91 GeV data

L3 Analysis

Idea from Chekanov, De Wolf, Kittel, E.Phys.J.C6('99)403

Remove background:

 $\rho_2 = 1/(Purity.N_{EVENTS}) \cdot (dn/dQ - dn_{BACKGROUND}/dQ)$

All background samples include BEC (BE₃₂ model)

Form ratio D=lhs/rhs

D' = D(data) / D(MC, intra-W BEC) remove

potential

residual bias

 $D \cong D' \neq 1$ \Rightarrow non-independent W decays \Rightarrow plausibly inter-W BEC

Nigel Watson / Univ. of Birmingham

Nigel Watson / Univ. of Birmingham

Preliminary Combined LEP Results

